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Abstract
Recent studies have suggested various side-channel attacks

for eavesdropping sound by analyzing the side effects of
sound waves on nearby objects (e.g., a bag of chips and win-
dow) and devices (e.g., motion sensors). These methods pose
a great threat to privacy, however they are limited in one of
the following ways: they (1) cannot be applied in real time
(e.g., visual microphone), (2) are not external, requiring the
eavesdropper to compromise a device with malware (e.g., Gy-
rophone), or (3) are not passive, requiring the eavesdropper
to direct a laser beam at an object (e.g., laser microphone).

In this paper, we introduce "Lamphone," a novel side-
channel attack for eavesdropping sound; this attack is per-
formed by using a remote electro-optical sensor to analyze
a light bulb’s frequency response to sound. We show how
fluctuations in the air pressure on the surface of a light bulb
(in response to sound), which cause the bulb to vibrate very
slightly (a millidegree vibration), can be exploited by eaves-
droppers to recover speech and singing, passively, externally,
and in real time. We analyze a light bulb’s response to sound
via an electro-optical sensor and learn how to isolate the audio
signal from the optical signal. We develop an algorithm to re-
cover sound from the optical measurements obtained from the
vibrations of a light bulb and captured by the electro-optical
sensor. Finally, we show that Lamphone is capable of recover-
ing speech audio with good/fair intelligibility from 45 meters
at a lower sound level than previous studies.

1 Introduction
Eavesdropping, the act of secretly or stealthily listening to

a target/victim without his/her consent [1], by analyzing the
side effects of sound waves on nearby objects (e.g., a bag of
chips) and devices (e.g., motion sensors) is considered a great
threat to privacy. In the past five years, various studies have
demonstrated novel side-channel attacks that can be applied
to eavesdrop via compromised devices placed in physical
proximity of a target/victim [10, 11, 16, 17, 20, 23, 29, 36].
In these studies, data from devices that are not intended to
serve as microphones (e.g., motion sensors [10, 11, 17, 23,

36], speakers [16], vibration devices [29], and magnetic hard
disk drives [20]) are used by eavesdropper to recover sound.
Sound eavesdropping based on the methods suggested in
the abovementioned studies is very hard to detect, because
applications/programs that implement such methods do not
require any risky permissions (such as obtaining data from a
video camera or microphone). As a result, such applications
do not raise any suspicion from the user/operating system
regarding their real use (i.e., eavesdropping). However, such
methods require the eavesdropper to compromise a device
located in proximity of a target/victim in order to: (1) obtain
data that can be used to recover sound, and (2) exifltrate the
raw/processed data.

To prevent eavesdroppers from implementing the above-
mentioned methods which rely on compromised devices, orga-
nizations deploy various mechanisms to secure their networks
(e.g., air-gapping the networks, prohibiting the use of vulner-
able devices, using firewalls and intrusion detection systems).
As a result, eavesdroppers typically utilize three well-known
methods that don’t rely on a compromised device. The first
method exploits radio signals sent from a victim’s room to
recover sound. This is done using a network interface card
that captures Wi-Fi packets [32, 33] sent from a router placed
in physical proximity of a target/victim. While routers exist in
most organizations today, the primary disadvantages of these
methods are that they cannot be used to recover speech [33] or
they rely on a precollected dictionary to achieve their goal [32]
(i.e., only words from the dictionary can be classified).

The second method, the laser microphone [24, 25], relies
on a laser transceiver that is used to direct a laser beam into
the victim’s room through a window; the beam is reflected
off of an object and returned to the laser transceiver which
converts the beam to an audio signal. In contrast to [32, 33],
laser microphones can be used in real time to recover speech,
however the laser beam can be detected using a dedicated
optical sensor. The third method, the visual microphone [13],
exploits vibrations caused by sound from various materials
(e.g., a bag of chips, glass of water, etc.) in order to recover
speech, by using a video camera that supports a very high
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frame per second (FPS) rate (over 2200 Hz). In contrast to
the laser microphone, the visual microphone is totally passive,
so its implementation is much more difficult for organiza-
tions/victims to detect. However, the main disadvantage of
this method, according to the authors, is that the visual micro-
phone cannot be applied in real time, because it takes a few
hours to recover a few seconds of speech, since processing
high resolution and high frequency (2200 frames per second)
video requires significant computational resources.

In this paper, we introduce "Lamphone," a novel side-
channel attack that can be applied by eavesdroppers to recover
sound from a room that contains a floor/ceiling/desk light bulb.
Lamphone recovers sound optically via an electro-optical sen-
sor which is directed at a floor/ceiling/desk bulb; such bulbs
vibrate due to air pressure fluctuations which occur naturally
when sound waves hit the light bulb’s surface. We explain
how a bulb’s response to sound (a millidegree vibration) can
be exploited to recover sound, and we establish a criterion for
the sensitivity specifications of a system capable of recover-
ing sound from such small vibrations. Then, we evaluate a
bulb’s response to sound, identify factors that influence the
recovered signal, and characterize the recovered signal’s be-
havior. Based on our findings, we present an algorithm we
developed in order to isolate the audio signal from the optical
signal obtained by directing an electro-optical sensor at a light
bulb. We evaluate Lamphone’s performance on the task of
recovering sound and show that when eavesdroppers have
a clear line of sight to a target light bulb, that may contain
transparent objects (e.g., a glass window/door) between the
light bulb and the eavesdroppers, Lamphone is capable of re-
covering speech audio (1) at 80 dB (the sound level of a Zoom
conversation) with excellent intelligibility from a distance of
25 meters and with good intelligibility from 45 meters, and (2)
at 70 dB with fair intelligibility from a distance of 45 meters.
In addition, we also evaluate Lamphone’s performance on the
task of recovering sound from a light bulb located in an an
office building, that is covered in curtain walls. We show that
eavesdroppers can exploit light emitted through curtain walls
and recover sound from 25 meters with fair intelligibility.

The rest of the paper is structured as follows: In Section
2, we review existing methods for eavesdropping. In Section
3, we present the threat model. In Section 4, we analyze the
response of a light bulb to sound. We present an algorithm for
recovering sound in Section 5, and in Section 6, we evaluate
Lamphone’s performance on the task of recovering sound.
In Section 7, we describe potential improvements that can
be made to optimize the quality of the recovered sound, and
we present countermeasure methods against the Lamphone
attack in Section 8. We discuss the limitations of the attack
and suggest future work directions in Section 9.

2 Background & Related Work
In this section, we explain how microphones work and

describe two categories of eavesdropping methods (external

Table 1: Summary of Related Work (NM - not mentioned in
the paper).

Exploited Device
Sampling

Rate
Sound
Level Technique
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Motion
Sensors

Gyroscope [23] 200 Hz 75 dB
ClassificationAccelerometer [10, 11, 36] 200 Hz 75 dB

Fusion of
motion sensors [17] 2 KHz 85 dB

Misc.
Vibration motor [29] 16 KHz 80 dB

RecoverySpeakers [16] 48 KHz NM
Magnetic hard drive [20] 17 KHz 90 dB

E
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na

l Radio
Receiver

Network interface card [32] 300 Hz NM Classification
Software-defined radio [33] 5 MHz 95 dB Recovery

Optical
Sensor

High speed video camera [13] 2200 FPS 95 dB RecoveryLaser transceiver [24, 25] 40 KHz

and internal) and two sound recovery techniques. Then, we
review and categorize related research focused on eavesdrop-
ping methods and discuss the significance of Lamphone with
respect to those methods.

Microphones are devices that convert acoustic energy
(sound waves) into electrical energy (the audio signal) [3].
Most microphones create electrical signals from sound waves
using a three-step process involving the following compo-
nents [5]. (1) Diaphragm: In the first step, sound waves (fluc-
tuations in air pressure) are converted to mechanical motion
by means of a diaphragm, a thin piece of material (e.g., plastic,
aluminum), which vibrates when it is struck by sound waves.
(2) Transducer: In the second step, when the diaphragm vi-
brates, the coil (attached to the diaphragm) moves in the mag-
netic field, producing a varying current in the coil through
electromagnetic induction. (3) ADC (analog-to-digital con-
verter): In the third step, the analog electric signal is sampled
to a digital signal at standard audio sample rates (e.g., 44.1,
88.2, 96 kHz) using ADC.

There are two categories of eavesdropping methods which
differ in terms of the location of the three components. In-
ternal methods for eavesdropping are methods used to con-
vert sound to electrical signals that rely on a single device.
This device consists of the abovementioned components (i.e.,
the three components are co-located) and is placed near the
source of the sound (the victim/target). Internal methods rely
on a compromised device/sensor (e.g., a smartphone’s gyro-
scope [23], magnetic hard drive [20], or speaker [16]) that is
located in physical proximity to a victim/target and require
the eavesdropper to exifltrate the output (electrical signal)
from the device (e.g., via the Internet).

External methods are methods where the three components
are not co-located. As with internal methods, the diaphragm
is located in proximity of the source of the sound (the vic-
tim/target, however the diaphragm is based on objects (rather
than devices), such as a glass window (in the case of the laser
microphone), a bag of chips (in the visual microphone [13]),
and a light bulb (in Lamphone). However, the other two com-
ponents are part of another device (or devices) that can be
located far from the victim/target, such as a laser transceiver
(in the case of the laser microphone), a video camera (in the vi-
sual microphone), or an electro-optical sensor (in Lamphone).
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There are two types of techniques used for eavesdropping:
classification and audio/sound recovery.

Classification techniques can classify signals as isolated
words. The signals obtained are uniquely correlated with
sound, however they are not comprehensible (i.e., the signals
cannot be recognized by the human ear) due to their poor
quality (various factors can affect the quality, e.g., a low sam-
pling rate). These methods require a dedicated classification
model that relies on comparing a given signal to a dictionary
compiled prior to eavesdropping (e.g., Gyrophone [23], Ac-
celWord [36]). The biggest disadvantages of such methods
are that words that do not exist in the dictionary cannot be
classified and word separation techniques required to remove
the silence.

Audio recovery consists of techniques in which the recov-
ered signal can be played and recognized by the human ear
(e.g., laser microphone, visual microphone [13], Hard Drive
of Hearing [20], SPEAKE(a)R [16], etc.). They do not com-
pare the obtained signal to a collection of signals gathered in
advance or require a dedicated dictionary.

Several studies [10,11,17,23,36] have shown that measure-
ments obtained from motion sensors that are located in prox-
imity of a victim can be used for classification. They variously
demonstrated that the response of MEMS gyroscopes [23],
accelerometers [10, 11, 36], and geophones [17] to sound at
75-85 dB can be used to classify words and identify speakers
and their genders, even when the sensors are located within a
smartphone and the sampling rate is limited to 200 Hz. Two
other studies [16, 29] showed that the process of output de-
vices can be inverted to recover speech. In [29], the authors
established a microphone by recovering sound at 80 dB from
a vibration motor, and in [16], the audio from speakers was
recovered. A recent study [20] exploited magnetic hard disks
to recover audio, showing that measurements of the offset of
the read/write head from the center of the track of the disk
can be used to recover songs and speech at 90 dB.

The main disadvantages of the internal eavesdropping meth-
ods mentioned above ( [10,11,16,17,20,23,29,36]) are that (1)
they require the eavesdropper to compromise a device located
near the victim, and (2) security aware organizations imple-
ment security policies and mechanisms aimed at preventing
the creation of microphones using such devices.

Two studies [32, 33] used the physical layer of Wi-Fi pack-
ets to eavesdrop sound at 95 dB. In [33], the authors suggested
a method that analyzes the received signal strength (RSS) in-
dication of Wi-Fi packets sent from a router to recover sound
by using a device with an integrated network interface card.
They showed that this method can be used to recover the
sound from a piano located two meters away, however the
authors did not demonstrate their method on the task of re-
covering speech. In [32], the authors suggested a method that
analyzes the channel state information (CSI) of Wi-Fi packets
sent from a router to classify words. The main disadvantage
of this method is that it relies on a precollected dictionary.

The laser microphone [24,25] is a well-known method that
uses an external device. In this case, a laser beam is directed
by the eavesdropper through a window into the victim’s room;
the laser beam is reflected off an object and returned to the
eavesdropper who converts the beam to an audio signal. For
decades, this method has been extremely popular in the area
of espionage; its main disadvantage is that it can be detected
using a dedicated optical sensor that analyzes the directed
laser beams.

The most famous method related to our research is the
visual microphone [13]. In this method, the eavesdropper
analyzes the response of material inside the victim’s room
(e.g., a bag of chips, water, etc.) to sound waves at 95 dB,
using video obtained from a high speed video camera (2200
FPS), and recovers speech. However, as was indicated by
the authors, it takes a few hours to recover sound from a
few seconds of video, because thousands of frames must be
processed. In addition, this method relies on a high speed
camera (at least 2200 FPS), which is an expensive piece of
equipment.

Two studies were able to recover speech from encrypted
VoIP by exploiting side effects of the compression’s process
(variable bitrate) [34, 35]. However, this paper focuses on
sound eavesdropping techniques than turn a physical object
into a diaphragm. Works that exploit a vulnerability in a
digital protocol are not in the scope of the paper. Table 1
presents a summary of related work in the area of sound
eavesdropping.

3 Threat Model
In this section, we describe the threat model and compare

it to methods presented in other studies. We assume a victim
located inside a room/office that contains a hanging/desk/floor
light bulb. We consider an eavesdropper that is a malicious
entity interested in spying on the victim in order to capture
the victim’s conversations and make use of the information
provided in the conversation (e.g., perform extortion based
on private information revealed by the victim). In order to
recover the sound in this scenario, the eavesdropper performs
the Lamphone attack.

Lamphone consists of the following primary components:
(1) Telescope - This piece of equipment is used to focus the
field of view on the light bulb from a distance. (2) Electro-
optical sensor - This sensor is mounted on the telescope and
consists of a photodiode (a semiconductor device) that con-
verts light into an electrical current. The current is generated
when photons are absorbed in the photodiode. Photodiodes
are used in many consumer electronic devices (e.g., smoke
detectors, medical devices). (3) Sound recovery system - This
system receives an optical signal as input and outputs the
recovered acoustic signal. The eavesdropper can implement
such a system with dedicated hardware (e.g., using capaci-
tors, resistors, etc.). Alternatively, the eavesdropper can use
an ADC to sample the electro-optical sensor and process the
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Figure 1: Lamphone’s threat model: The sound snd(t) from the victim’s room (1) creates fluctuations on the surface of the
desk/floor/hanging light bulb (the diaphragm) (2). The eavesdropper directs an electro-optical sensor (the transducer) at the light
bulb via a telescope (3). The optical signal opt(t) is sampled from the electro-optical sensor via an ADC (4) and processed, using
an algorithm to recover the acoustic signal snd∗(t) (5).

data using a sound recovery algorithm running on a laptop. In
this study, we use the latter digital approach.

The conversation held in the victim’s room creates sound
snd(t) that results in fluctuations in the air pressure on the
surface of the light bulb. These fluctuations cause the bulb
to vibrate, resulting in a pattern of displacement over time
that the eavesdropper measures with an optical sensor that
is directed at the bulb via a telescope. The analog output of
the electro-optical sensor is sampled by the ADC to a digital
optical signal opt(t). The eavesdropper then processes the
optical signal opt(t), using an audio recovery algorithm, to
an acoustic signal snd∗(t). Fig. 1 outlines the threat model.

As discussed in Section 2, microphones rely on three com-
ponents (a diaphragm, transducer, and ADC). In Lamphone,
the light bulb is used as a diaphragm which captures the
sound. The transducer, in which the vibrations are converted
to electricity, consists of the light that is emitted from the
bulb (located in the victim’s room) and the electro-optical
sensor that creates the associated electricity (located outside
the room at the eavesdropper’s location). An ADC is used to
convert the electrical signal to a digital signal in a standard
microphone and in Lamphone. As a result, the Lamphone
method is entirely passive and external.

The significance of Lamphone’s threat model with respect
to related work is that Lamphone: (1) is an external method
that relies on a line of sight between the optical sensor and
the bulb (as opposed to other methods that require eavesdrop-
pers to compromise a device located in physical proximity
of the victim [10, 16, 17, 20, 23, 29, 32, 33, 36]), (2) relies on
an electro-optical sensor that is passive (as opposed to the
laser microphone [24,25] which utilizes an active laser beam),
(3) can be performed in real time (as opposed to the visual
microphone [13]), (4) is a technique for sound recovery and
not for classification, so it does not rely on a pretrained dictio-
nary or additional techniques for word separation (as opposed
to [10, 17, 23, 32, 36]).

In order to keep the digital processing as light as possible in
terms of computation, we want to sample the electro-optical
sensor with the ADC at the minimal sampling frequency that
allows comprehensible audio recovery. Lamphone is aimed
at recovering sound (e.g., speech, singing), and a sufficient
sampling frequency is required. The spectrum of speech cov-

ers quite a wide portion of the audible frequency spectrum.
Speech consists of vowel and consonant sounds; the vowel
sounds and the cavities that contribute to the formation of
the different vowels range from 85 to 180 Hz for a typical
adult male and from 165 to 255 Hz for a typical adult female.
In terms of frequency, the consonant sounds are above 500
Hz (more specifically, in the 2-4 kHz frequency range) [2].
As a result, a telephone system samples an audio signal at 8
kHz. However, many studies have shown that an even lower
sampling rate is sufficient to recover comprehensible sound
(e.g., 2200 Hz for the visual microphone [13]). In this study,
we sample the electro-optical sensor at a sampling rate of 2-4
kHz.

4 Bulbs as Microphones
In this section, we perform a series of experiments aimed

at explaining why light bulb vibrations can be used to recover
sound and evaluate a bulb’s response to sound empirically.

4.1 The Physical Phenomenon
First, we measure the vibration of a light bulb when sound

waves hit the light bulb’s surface, and we establish a crite-
rion for the sensitivity specifications of a system capable of
recovering sound from these vibrations

4.1.1 Measuring a Light Bulb’s Vibration
To measure the response of a light bulb to sound, we exam-

ine how sound produced in proximity to the light bulb affects
a bulb’s three-dimensional vibration (as presented in Fig. 2).

Experimental Setup: We attached a gyroscope (MPU-6050
GY-521 [6]) to the bottom of an E27 LED hanging light bulb
(12 watts); the bulb was not illuminated during this experi-
ment. A Raspberry Pi 3 was used to sample the gyroscope
at 800 Hz. We placed Logitech Z533 speakers very close to
the bulb (one centimeter away) and played various sine waves
(100, 150, 200, 250, 300, 350, 400 Hz) from the speakers at
three volume levels (60, 70, 80 dB). We obtained measure-
ments from the gyroscope while the sine waves were played.
We repeated this experiment again for an E14 LED light bulb.

Results: Based on the measurements obtained from the
gyroscope, we calculated the average peak-to-peak difference
(in degrees) for θ and φ (which are presented in Fig. 3). The
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Figure 2: A 3D scheme of a light bulb’s
axes.

Figure 3: Peak-to-peak difference of angles φ and θ for E27 (left) and E14 (right) light
bulbs at the 100-400 Hz spectrum.

Figure 4: The peak-to-peak movement for E14 (top) and E27
(bottom) bulbs at the range of 100-400 Hz.

average peak-to-peak difference was computed by calculating
the peak-to-peak difference between every 800 consecutive
measurements (that were collected from one second of sam-
pling) and averaging the results. The frequency response as a
function of the average peak-to-peak difference is presented
in Fig. 3. The results presented in Fig. 3 reveal three inter-
esting insights: the average peak-to-peak difference for the
angle of the bulb is: (1) very small (1-7 millidegrees for an
E27 light bulb and 2-35 millidegrees for an E14 light bulb),
(2) increases as the volume increases, and (3) changes as a
function of the frequency.

Based on the known formula of the spherical coordinate
system [9], we calculated the 3D vector (x,y,z) that represents
the peak-to-peak vibration on each of the axes. We calculated
the Euclidean distance between this vector and the vector of
the initial position. Fig. 3 presents the results which show that
sound caused caused a movement of 3.5-12 microns of the
E27 light bulb and a vibration of 17-55 microns of the E14
light bulb.

Figure 5: Experimental setup: the telescope and the two light
bulbs that were used in the experiments. A PDA100A2 electro-
optical sensor [8] is mounted on the telescope. The electro-
optical sensor outputs voltage that is sampled via an ADC
(NI-9234) [7] and processed in LabVIEW.

4.1.2 Capturing the Optical Changes
We now explain how eavesdroppers can determine the sen-

sitivity of the equipment (an electro-optical sensor, telescope,
and ADC) needed to recover sound based on a bulb’s vibra-
tion. The graphs presented in Fig. 3 establish a criterion for
recovering sound: the eavesdropping system (consisting of an
electro-optical sensor, telescope, and ADC) must be sensitive
enough to capture the small optical differences that are the
result of a hanging bulb’s vibrations of 3.5-55 microns.

In order to demonstrate how eavesdroppers can determine
the sensitivity of the equipment they will need to satisfy the
abovementioned criterion, we conduct another experiment.

Experimental Setup: We directed a telescope (with a lens
diameter of 25 cm) at a 1050 lumens E27 LED bulb (as can
be seen in Fig. 5). We mounted an electro-optical sensor (the
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Table 2: Expected Voltage for Each Frequency (based on linear equations calculated from Fig. 6 and expected movement from
Fig. 4). Green cells can be detected by a 24 bit ADC and yellow cells can be detected by a 32 bit ADC.

Expected voltage change for E14 light bulb Expected voltage change for E27 light bulb
Distance Linear equation 150 Hz 200 Hz 250 Hz 300 Hz 350 Hz 400 Hz 150 Hz 200 Hz 250 Hz 300 Hz 350 Hz 400 Hz
1m - 2m y = -0.59x + 2.56 10.2 µV 10.8 µV 10.2 µV 33 µV 13.2 µV 31.8 µV 2.22 µV 2.4 µV 5.4 µV 7.2 µV 2.52 µV 2.4 µV
2m - 3m y = -0.52x + 2.41 8.9 µV 9.42 µV 8.9 µV 28.8 µV 11.5 µV 27.74 µV 1.94 µV 2.09 µV 4.71 µV 6.28 µV 2.2 µV 2.9 µV
3m - 4m y = -0.14x + 1.27 2.47 µV 2.62 µV 2.47 µV 7.98 µV 3.2 µV 7.7 µV 0.54 µV 0.58 µV 1.31 µV 1.74 µV 0.61 µV 0.58 µV
4m - 6m y = -0.136+ 1.24 1.27 µV 1.34 µV 1.27 µV 4.11 µV 1.64 µV 3.95 µV 0.51 µV 0.55 µV 1.23 µV 1.64 µV 0.57 µV 0.55 µV
6m - 7m y = -0.12x + 1.14 2.1 µV 2.22 µV 2.1 µV 6.64 µV 2.71 µV 6.54 µV 0.43 µV 0.49 µV 1.11 µV 1.48 µV 0.51 µV 0.49 µV
7m - 9m y = -0.1x + 1.02 1.7 µV 1.8 µV 1.7 µV 5.5 µV 2.2 µV 5.3 µV 0.37 µV 0.4 µV 0.9 µV 1.2 µV 0.42 µV 0.4 µV
9m - 10m y = -0.005x + 0.16 0.09 µV 0.09 µV 0.09 µV 0.28 µV 0.11 µV 0.28 µV 19 nV 21 nV 47 nV 63 nV 22 nV 21 nV

Figure 6: Output obtained from the electro-optical sensor
from various ranges.

Thorlabs PDA100A2 [8], which is an amplified switchable
gain light sensor that consists of a photodiode, used to convert
light to electrical voltage) to the telescope. The voltage was
obtained from the electro-optical sensor using a 24-bit ADC
NI-9234 card [7] and was processed in a LabVIEW script that
we wrote. The internal gain of the electro-optical sensor was
set at 50 dB. We placed the telescope at various distances (1,
2, 3, 4, 6, 7, 9, 10 meters) from the light bulb and measured
the voltage that was obtained from the electro-optical sensor
at each distance.

Results: The results of this experiment are presented in Fig.
6. These results were used to compute the linear equation
between each two consecutive points. Based on the linear
equations, we calculated the expected voltage for each ex-
pected movement in the 100-400 Hz spectrum for E27 and
E14 light bulbs for a sound level of 80 dB (based on the results
from Fig. 4). The linear equations and the expected voltage
for each movement are presented in Table 2.

We now explain how to use the data in Table 2 in order
to determine which frequencies can be recovered from the
obtained optical measurements for a sound level of 80 dB. A
24-bit ADC with an input range of [-5,5] voltage (e.g., like
the card used in our experiments) provides a sensitivity of:

10
224−1

≈ 0.6 µV (1)

Analyzing Table 2, we find that a sensitivity of 0.6 µV
(which is provided by a 24-bit ADC) is sufficient for recover-
ing the entire spectrum (100-400 Hz) from a maximum range
of nine meters for an E14 light bulb, because the smallest
vibration of the bulb (17 microns) from this range is expected
to yield a difference of 1.7 µV (for a frequency of 150 Hz and
a range of nine meters). In the case of an E27 light bulb, the
sensitivity provided by a 24-bit ADC is sufficient to recover
the entire spectrum from a shorter range of up to three meters
(because the E27 light bulb is heavier than the E24 light bulb,

and its vibrations are smaller). The green cells in Table 2
indicate frequencies that can be recovered by a 24-bit ADC
(i.e., their value is greater than 0.6 µV). As can be seen from
the table, the setup we used is not sensitive enough to recover
the entire measured spectrum of: (1) an E14 light bulb from
a range beyond nine meters, and (2) an E27 light bulb from
a range beyond three meters. In order to recover frequencies
from a greater distance, an ADC that provides a higher sensi-
tivity is required. A 32-bit ADC with an input range of [-5,5]
voltage provides a sensitivity of:

10
232−1

≈ 2.3 nV (2)

A sensitivity of 2.3 nV, which is provided by a 32-bit ADC,
is sufficient for recovering the entire spectrum (100-400 Hz)
in the ranges that were measured, because the smallest vibra-
tion of the bulb (3.5 microns) is expected to yield a difference
of 19 nV (for a frequency of 150 Hz and a range of 10 meters).
The yellow cells in Table 2 indicate the frequencies that can
be recovered by a 32-bit ADC (i.e., their value is greater than
2.3 nV and lower than 0.6 µ).

In order to optimize the setup so it can be used to detect
frequencies that cannot be recovered, eavesdroppers can: (1)
increase the internal gain of the electro-optical sensor, (2) use
a telescope with a lens capable of capturing more light (we
demonstrate this later in the paper), or (3) use an ADC that
provides greater resolution and sensitivity.

4.2 Exploring the Optical Response to Sound
The experiments presented in this section were performed

to evaluate bulbs’ response to sound. The experimental setup
described in the previous subsection (presented in Fig. 5) was
also used throughout these set of experiments.

4.2.1 Characterizing Optical Signal in Silence
First, we learn the characteristics of the optical signal when

no sound is played.
Experimental setup: We obtained five seconds of optical

measurements from the electro-optical sensor when no sound
was played in the lab.

Results: The FFT graph extracted from the optical mea-
surements when no sound was played is presented in Fig.
7. Each bulb works at a fixed light frequency (e.g., 100 Hz).
Since opt(t) is obtained via an electro-optical sensor directed
at a bulb, the light frequency and its harmonics are added to
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Figure 7: Baseline - FFT of the optical
signal in silence (no sound is played).

Figure 8: Difference in FFT before and
when an air horn was used.

Figure 9: SNR for a desk lamp at 100-2000
Hz.

Figure 10: SNR for a hanging light bulb at
100-2000 Hz.

Figure 11: A comparison of the SNR ob-
tained from various bulbs.

the raw signal opt(t). These frequencies strongly impact the
optical signal and are not the result of the sound that we want
to recover. From this experiment we concluded that filtering
will be required.

4.2.2 Bulb’s Response to a Single Sine Wave
Next, we show that the effect of sound on a nearby bulb can

be exploited to recover sound by analyzing the light emitted
from the bulb via an electro-optical sensor in the frequency
domain.

Experimental Setup: In this experiment, we used an air horn
that plays a sine wave at a frequency of 518 Hz. We pointed
the electro-optical sensor at the bulb and obtained optical
measurements. Then we placed the air horn five centimeters
away from the bulb and operated the horn, obtaining sensor
measurements as we did so.

Results: Fig. 8 presents two FFT graphs created from two
seconds of optical measurements obtained before and while
the air horn was used. As can be seen from the results, the
peak that was added to the frequency domain at around 518
Hz shows that the sound the air horn produced affects the
optical measurements obtained via the electro-optical sensor.
In this experiment, we specifically used a device (air horn) that
does not create an electro-magnetic side effect (in addition
to the sound), in order to prove that the results obtained are
caused by fluctuations in the air pressure on the surface of the
bulb (and not by anything else).

4.2.3 Bulb’s Response to Sound at 100-2000 Hz
In the next experiment, we tested the response of a hang-

ing light bulb and the light bulb in a desk lamp to a wide
spectrum of frequencies. These experiments were conducted
using speakers that were placed five centimeters away from
the light bulb on a dedicated stand.

Experimental Setup: We created an audio file that consists
of various sine waves (120, 170, 220, .... 1020 Hz) where

each sine wave was played for two seconds. We played the
audio file via the speakers near the bulb at three volume levels
(60, 70, 80 dB) and obtained the optical signal via the electro-
optical sensor.

Results: Figs. 9 and 10 present the SNR obtained from the
desk lamp light bulb and the hanging light bulb. Analyzing the
signal with respect to the original signal reveals two insights:
(1) The response of the recovered signal decreases as the
frequency increases until its power reaches same level as the
noise. (2) The SNR improves as the volume increases. From
this experiment we concluded that we would have to increase
the SNR using speech enhancement and denoising techniques,
and strengthen the response of higher frequencies in order to
recover them using an equalizer.

4.2.4 Various Bulbs’ Responses to Sound
Next, we compare the response of various bulbs to sound.
Experimental Setup: We repeated the previous experiment

for three different types of 12 watt E27 bulbs: LED, florescent,
and incandescent. In each experiment, a different bulb was
used, along with the same audio file; we obtained the optical
measurements via the electo-optical sensor, resulting in an
optical signal for each of the bulbs.

Results: We calculate the SNR obtained from the three
optical signals. Fig. 11 presents the results. As can be seen,
sound can be recovered from the three bulbs that were tested.
However, the SNR of the LED and incandescent bulbs is much
higher than the SNR obtained from the fluorescent bulb.

5 Sound Recovery Model
In this section, we leverage the findings presented in Sec-

tion 4 and present Algorithm 1 for recovering audio from
measurements obtained from an electro-optical sensor di-
rected at a light bulb. We assume that snd(t) is the audio
that is played inside the victim’s room. The input to the algo-
rithm is (1) optical− stream, a pointer to the optical stream
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Figure 12: The effect of each stage of Algorithm 1 in recovering the word "lamb" from an optical signal.

(the output of an ADC that samples the electro-optical sen-
sor), (2) f s the frequency that the ADC samples, and (3) a
equalizer− f unction that is used for balancing. The stages
of Algorithm 1 for recovering sound are described below and
presented in Fig. 12.

Algorithm 1 Recovering Audio from Optical Signal

1: INPUT: optical-stream, fs, equalizer-function
2: bulbFs = 100
3: while (!isEmpty(optical-stream) do)
4: /*Read from optical-stream to a buffer*/
5: opt[] = read(optical-stream,fs)
6: snd* = opt
7: /*Filtering side effects*/
8: for (i = bulbFs; i < fs/2; i+=bulbFs) do
9: snd* = bandstop(i,snd*)

10: /*Scaling to [-1,1]*/
11: min = min(snd*), max = max(snd*)
12: for (i = 0; i < len(snd*); i+=1) do
13: snd*[i] = -1 + (snd∗[i]−min)∗2

max−min

14: /*Noise reduction*/
15: snd* = spectral-subtraction(snd*)
16: /*Balancing*/
17: snd* = equalizer(snd*,equalizer-function)
18: play (snd*)

1) Filtering Side Effects: As discussed in Section 4 and
presented in Fig. 7, there are factors which affect the optical
signal opt(t) that are not the result of the sound played (e.g.,
peaks which are added to the spectrum that are the result of
the lighting frequency of the light bulb and its harmonics - 100
Hz, 200 Hz, etc.). We filter these frequencies using bandstop
filters (lines 7-8 in Algorithm 1). The effect of the filters
applied to the optical signal is illustrated in Fig. 12.

2) Speech Enhancement: Speech enhancement (using au-
dio signal processing techniques) is performed to optimize
the speech quality by improving the intelligibility and over-
all perceptual quality of the speech signal. We enhance the
speech by normalizing the values of opt(t) to the range of
[-1,1] (lines 10-12 in Algorithm 1). The impact of this stage
is enhancement of the signal (as can be seen in Fig. 12).

3) Noise Reduction: Noise reduction is the process of re-
moving noise from a signal in order to optimize its quality.
We reduce the noise by applying spectral subtraction, one
of the first techniques proposed for denoising single channel

speech [31] (line 14 in Algorithm 1).
4) Equalizer: Equalization is the process of adjusting the

balance between frequency components within an electronic
signal. We use an equalizer in order to amplify the response
of weak frequencies. The equalizer is provided as input to
Algorithm 1 and applied in its last stage (line 16).

The techniques used in this study to recover speech are
extremely popular in the area of speech processing; we used
them for the following reasons: (1) the techniques rely on a
speech signal that is obtained from a single channel; if eaves-
droppers have the capability of sampling the light bulb using
other sensors, thereby obtaining several signals via multiple
channels, other methods can also be applied to recover an
optimized signal, (2) these techniques do not require any prior
data collection to create a model; novel speech processing
methods use neural networks to optimize the speech quality in
noisy channels, however such neural networks require a large
amount of data for the training phase in order to create robust
models, a requirement that eavesdroppers would likely prefer
to avoid, and (3) the techniques can be applied in real-time
applications, so the optical signal obtained can be converted
to audio with minimal delay.

6 Evaluation
In this section, we evaluate the performance of the Lam-

phone attack in terms of its ability to recover sound from
the light bulb of a desk lamp and a hanging light bulb. We
start by comparing the performance of Lamphone to the vi-
sual microphone in a lab setup. We continue by testing the
influence of distance and sound volume on the performance
of Lamphone when there are no obstacles or only transpar-
ent obstacles exist between the light bulb and the telescope
(e.g., transparent glass window/door). Finally, we evaluate the
Lamphone’s performance for recovering sound using light
emitted through the curtain walls on an office building at our
university.

The reader can assess the the quality of the recovered sound
visually by analyzing the extracted spectrograms, qualitatively
by listening to the recovered audio signal online,1 and quanti-
tatively based on metrics used by the audio processing com-
munity to compare a recovered signal to its original signal:
(1) Intelligibility - a measure of how comprehensible speech
is in given conditions. Intelligibility is affected by the level
and quality of the speech signal, and the type and level of

1 https://youtu.be/0eaFXXS7eU4
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Table 3: Comparison between the results of Visual Microphone (VM) and Lamphone for Sound Recovery of Speech.
Intelligibility LLR WSS NIST STNR

Speech VM HL DL VM HL DL VM HL DL VM HL DL
Female speaker - fadg0, sa1 "She had your dark suit in greasy wash water all year" 0.72 0.74 0.72 1.47 1.93 1.79 120.29 88.2 75.55 26.8 16.8 16
Female speaker - fadg0, sa2 "Don’t ask me to carry an oily rag like that" 0.65 0.69 0.67 1.37 2.44 2.1 197.83 68.82 71.76 43.3 3.8 4.5
Male speaker - mccs0, sa1 "She had your dark suit in greasy wash water all year" 0.59 0.75 0.7 1.31 2.03 1.72 149.55 72.81 63.1 27.3 14 10.3
Male speaker - mccs0, sa2 "Don’t ask me to carry an oily rag like that" 0.67 0.76 0.71 1.55 2.09 1.86 137.04 72.92 59.23 18 3 2.8
Male speaker - mabw0, sa1 "She had your dark suit in greasy wash water all year" 0.77 0.69 0.67 1.68 1.71 1.48 211.11 72.71 54.97 6 16 5.5
Male speaker - mabw0, sa2 "Don’t ask me to carry an oily rag like that" 0.72 0.73 0.69 1.81 2.09 1.89 162.11 74.35 73.77 25.8 4.3 5.3

Average 0.68 0.72 0.69 1.53 2.04 1.8 162.98 74.96 66.39 24.53 9.65 7.4

background noise and reverberation [4]. To measure intelli-
gibility we used the metric suggested by [30] which results
in values between [0,1]. The results are classified as follows:
bad [0,0.3], poor [0.3,0.45], fair [0.45,0.6], good [0.6,0.75],
and excellent [0.75,1] [4]. (2) Log-Likelihood Ratio (LLR)
- a metric that captures how closely the spectral shape of a
recovered signal matches that of the original clean signal [28].
This metric has been used in speech research for many years
to compare speech signals [12] and is also used to evaluate the
quality of non-speech audio [15]. A lower LLR indicates bet-
ter sound quality. (3) Weighted Spectral Slope (WSS) - a dis-
tance measure that computes the weighted difference between
the spectral slopes in each frequency band [22]. The spectral
slope is the difference between adjacent spectral magnitudes
in decibels. A lower WSS indicates better speech quality. (4)
NIST Speech SNR (NIST-SNR) - the speech to noise ratio
defined as the logarithmic ratio between the speech power
and noise power estimated over 20 consecutive milliseconds.
A higher NIST-SNR indicates better sound quality.

We used the following equipment and configurations to
recover sound in all of the experiments conducted and de-
scribed in this section: a telescope (SkyWatcher with a 35cm
lens diameter) was directed at the light bulbs. We mounted
an electro-optical sensor (Thorlabs PDA100A2 [8]) to the
telescope. The voltage was obtained from the electro-optical
sensor using a 24-bit ADC NI-9234 card [7] and was pro-
cessed in a LabVIEW script that we wrote. The sampling
frequency of the ADC was configured at 2 KHz. In the rest
of this section we refer to this setup as the eavesdropping
equipment. The level of the played sound was measured with
a professional decibel meter.

6.1 Comparing Lamphone to the Visual Mi-
crophone

First, we compare the performance of Lamphone to that of
the visual microphone [13]. The authors proposing the visual
microphone demonstrated the recovery of six sentences from
the TIMIT repository [14] by playing the sentences via speak-
ers and analyzing the resulting vibrations of a bag of chips via
a high frequency video camera (2200 FPS) from a distance
of two meters. We compare Lamphone’s performance when
recovering the same sentences by analyzing the vibrations of
two 12 Watt E14 light bulbs: a (1) hanging light bulb and (2)
a light bulb in a desk lamp.

Experimental Setup: We duplicated the experimental setup
used in the visual microphone study [13] as follows: We

placed speakers on a dedicated stand so their vibrations won’t
affect the bulbs. We played the same six sentences from the
TIMIT repository that were recovered by the visual micro-
phone via the speakers at the same volume level used in
the visual microphone study (95 dB). In our experiment, the
eavesdropping equipment was placed 2.5 meters from the
light bulbs, behind a closed door. Our experimental setup is
presented in Fig. 5 .

Results: We applied Algorithm 1 on the optical measure-
ments and recovered speech. The recovered audio signals are
available online1 where they can be heard. The spectrograms
of the six recovered sentences can be seen in Figs. 20 and
21 in the appendix. The intelligibility, LLR, WSS, and NIST-
SNR of the recovered signals is reported in Table 3 which
also contains the results reported in the visual microphone
study for each of the six recovered sentences. The results
presented in Table 3 reveal four interesting insights: (1) The
average intelligibility of the speech recovered by Lamphone
from a hanging bulb is 0.04 higher (better) than the average
intelligibility of the speech recovered when using the visual
microphone. (2) The average LLR of the speech recovered by
the visual microphone is lower (better) when using Lamphone
with both a desk lamp light bulb (average LLR of .27) and a
hanging bulb (average LLR of .51). (3) The average WSS of
the speech recovered using Lamphone with both a desk lamp
light bulb (average LLR of .27) and a hanging bulb (average
LLR of .51) is lower (better) at 96.59 and 88.02 than the
speech recovered by the visual microphone. (4) The average
NIST-SNR of the speech recovered by the visual microphone
is higher (better) than the average NIST-SNR of the recov-
ered speech from the recovered speech when using Lamphone
with a desk lamp light bulb (average NIST-SNR of 17.1) and
a hanging bulb (average NIST-SNR of 14.8).

Analyzing the results of this set of experiments, we con-
clude that the quality of the recovered speech by Lamphone
and the visual microphone is at the same level. The answer
to the question of which method is better depends on the
metric used to evaluate the methods. For some metrics, Lam-
phone method yields better results while in other cases, visual
microphone yields better results.

6.2 The Influence of Sound Level and Dis-
tance on Lamphone’s Performance

Next, we evaluate the influence of distance and sound vol-
ume on Lamphone’s performance. In this case, we assume
that there are no obstacles between the light bulb and the
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Table 4: "We Will Make America Great Again!" - Results of Recovered Speech from Various Distances and Sound Levels.
Intelligibility LLR WSS NIST-SNR
60 dB 70 dB 80 dB 60 dB 70 dB 80 dB 60 dB 70 dB 80 dB 60 dB 70 dB 80 dB

5m 0.39 0.57 0.77 2.79 1.55 1.52 290.19 146.99 77.21 6.8 13 24.3
15m 0.34 0.56 0.78 2.2 2.09 1.74 255.12 197.96 126.44 5 24.8 40
25m 0.34 0.55 0.78 3.27 2.3 1.59 255.17 207.01 73.36 1.8 24.8 22.3
35m 0.35 0.51 0.68 2.95 1.92 1.84 280.2 228.11 85.4 5.5 3 10.8
45m 0.31 0.54 0.66 2.42 1.87 1.84 275.03 196.42 91.86 5.3 19.8 10

Figure 13: The light bulb of a desk lamp
is located at the end of the hallway at a
distance of 45 meters away.

Figure 14: The SNR from a distance of
15 meters away for 60, 70, 80 dB volume
levels.

Figure 15: The SNR from a distance of
25 meters away for 60, 70, 80 dB volume
levels.

eavesdropping equipment or only transparent obstacles exist
between the light bulb and the eavesdropping equipment (e.g.,
a clear glass door/window).

We evaluate the performance of Lamphone for recovering
sound at normal speech levels (60, 70, 80 dB). A conversation
at 60 db is a normal level for a conversation between two
people located near one another. A conversation at 80 dB is
the average sound level for a conversation held via Zoom.

In the following set of experiments we tried to recover
sound from a 12 watt E14 desk lamp (placed on a desk) light
bulb from various distances. We placed speakers on a dedi-
cated stand so their vibrations would not affect the bulb; the
eavesdropping equipment was located behind two closed clear
glass doors. The setup can be seen in Fig. 13.

First, we start by testing the influence of the sound level on
the SNR.

Experimental Setup: We created an audio file that consists
of various sine waves (120, 170, 220, .... 1970 Hz) and placed
the eavesdropping equipment 15 and 25 meters away from the
light bulb. We played the audio file via speakers at 60, 70, and
80 dB while obtaining the optical measurements. The electro-
optical sensor was configured for the highest gain level before
saturation.

Results: Figs. 14 and 15 present the SNR for distances of
15 and 25 meters for each of the three sound levels measured.
As can be seen from the results, the SNR for 80 dB looks very
promising through the entire spectrum measured. The SNR
for 70 db reaches a noise level around 800 Hz, so effectively
there is a narrower bandwidth that allows sound recovery
compared to 80 dB. The SNR for 60 dB is very low, and only
sound at low frequencies can be recovered.

Next, we evaluated Lamphone’s performance in terms of
its ability to recover speech audio from various distances. In
order to do so, we decided to recover a famous statement
made by President Donald Trump: "We will make America

great again."
Experimental Setup: We placed the eavesdropping equip-

ment at five distances (5, 15, 25, 35, 45 meters) from the light
bulb. We played the audio file via speakers at 60, 70, and 80
dB while obtaining the optical measurements. The electro-
optical sensor was configured for the highest gain level before
saturation.

Results: We applied Algorithm 1 on the optical measure-
ments and recovered speech. The recovered audio signals are
available online1 where they can be heard. The spectrograms
of the the recovered speech can be seen in Figs. 22 and 24 in
the appendix. The intelligibility, LLR, WSS, and NIST-SNR
of the recovered signals are reported in Table 4. The results
reveal three interesting insights: (1) For a sound level of 80
dB, the intelligibility of the recovered signals is considered
excellent up to a distance of 25 meters (0.77) and good from
45 meters away (0.66). (2) For a sound level of 70 dB, the
intelligibility of the recovered signals is fair for a distance of
5-45 meters. (3) For a sound level of 60 dB, the intelligibility
is considered poor for a distance of 5-45 meters away.

The results obtained showed that Lamphone allows eaves-
droppers to recover sound in real time at 70 dB from a dis-
tance of 45 meters at a lower sound level than eavesdropping
methods proposed in previous studies which require higher
sound levels of 75-84 dB (e.g., [10, 23, 29, 36]), 85-94 dB
(e.g., [17, 20]), +95 dB (e.g., [13, 33]). However, to improve
the intelligibility and increase the effective range of the at-
tack, eavesdroppers can increase the system’s sensitivity (see
Section 7 for suggested improvements).

6.3 Recovering Sound Using Light Emitted
Through Curtain Walls

Next, we evaluate the performance of Lamphone for re-
covering sound at 80 dB from a desk lamp light bulb located
in an office building at our university that is covered by cur-
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Figure 16: Experimental setup: From left to right (1) The distance between the eavesdropper (located on a pedestrian bridge) to
the LED bulb of a desk lamp (in an office on the third floor of a building covered by curtain walls) is 25 meters, (2) the location
of the eavesdropper, and (3) the office with the desk lamp with an LED bulb.

Figure 17: FFT graph of optical mea-
surements when no sound is played.

Figure 18: SNR obtained from a distance
of 25 meters away w/o curtain walls.

Figure 19: SNR obtained from telescopes
with lens diameters of 10, 20, 35 cm

tain walls. The use of curtain walls is common in modern
office buildings, since they are designed to allow the offices
to benefit from natural light. In the previous set of experi-
ments we showed that eavesdroppers can recover speech at 80
dB from 25 meters away with excellent intelligibility (0.77)
when a direct line of sight to a light bulb exists, even if a
clear glass window/door exists between the light bulb and the
eavesdropping equipment. This time we assess Lamphone’s
performance for recovering sound from a light bulb, using
light emitted through a curtain wall, in order to evaluate the
quality of recovered audio when there is no clear/transparent
line of sight.

Fig. 16 presents the experimental setup. A desk lamp with
a 12 watt E14 LED light bulb was placed in an office at our
university located on the third floor of a building covered
by curtain walls, which reduce the amount of light emitted
from the offices (as can be seen in Fig. 16). We placed the
eavesdropping equipment on a pedestrian bridge, positioned
an aerial distance of 25 meters away from the target office.

We start by examining the effect of the setup on the opti-
cal measurements obtained. We note that the setup is very
challenging since: (1) there is no clear line of sight between
the eavesdropping equipment and the light bulbs (i.e., curtain
walls are placed in between and reduce the amount of emitted
light), and (2) the pedestrian bridge, on which the eavesdrop-
ping equipment is placed, is located above a train station and
railroad tracks which have a natural vibration of their own.

Experimental Setup: We directed the telescope at the desk
lamp light bulb in the office (as can be seen in Fig. 16). We ob-
tained measurements for three seconds via the electro-optical
sensor when no sound is played in the office.

Results: As can be seen from the FFT graph presented in

Fig. 16, the peaks of 100 Hz and 200 Hz, which are the result
of the lighting frequency of the light bulb, are part of the signal
(as discussed in Section 4). However, we observed a very
interesting phenomenon in which noise is added to the low
frequencies (< 40 Hz) of the optical signal. This phenomenon
is the result of the natural vibration of the bridge. Since this
phenomenon adds substantial noise to the signal obtained, we
used a high-pass filter (> 40 Hz) to optimize the results.

Experimental Setup: We created an audio file that consists
of various sine waves (120, 170, 220, .... 1970 Hz) where each
sine wave was played for two seconds. We played the audio
file via speakers at 80 dB while obtaining the optical measure-
ments. We directed the telescope at the desk lamp light bulb
in the office. The electro-optical sensor was configured for
the highest gain level before saturation.

Results: Fig. 18 shows the SNR obtained from this exper-
iment (where curtain wall exists between the light bulb and
the eavesdropping equipment). Fig. 18 also shows the SNR
obtained from a distance of 25 meters when there is a clear
line of sight between the eavesdropping equipment and the
light bulb (i.e., when there is no curtain wall in between). Fig.
18 reveals an interesting insight: The loss of light (a result of
the curtain wall) decreases the SNR significantly, especially
for the band beyond 600 Hz. As a result, there is a narrower
band that can be used to recover sound with a high SNR.

Next, we evaluated Lamphone’s performance in terms of
its ability to recover speech and non-speech audio.

Experimental Setup: We decided to recover two well-
known songs: "Let it Be" by The Beatles and "Clocks" by
Coldplay and the following two sentences: "We will make
America great again" spoken by Donald Trump and "Mary
had a little lamb whose fleece was white as snow and every
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Table 5: Results of Recovered Speech and Songs Through Curtain Walls From 25 Meters.
Intelligibility LLR WSS NIST SNR

"We will make America great again!" 0.59 3.38 175.69 8.5
"Mary had a little lamb whose fleece was white as snow
and every where that Mary went the lamb was sure to go" 0.54 3.22 147.18 10.5

Clocks 0.41 1.66 99 3.8
Let it Be 0.34 6.19 154.27 12

where that Mary went the lamb was sure to go" from the
TIMIT repository [14]. We played the four audio files in the
office via speakers at 80 dB. We directed the telescope at the
desk lamp light bulb in the office (as can be seen in Fig. 16).
The electro-optical sensor was configured for the highest gain
level before saturation.

Results: We applied Algorithm 1 on the optical measure-
ments and recovered speech. The recovered audio signals are
available online1 where they can be heard. The spectrograms
of the the recovered speech are presented in Figs. 25 - 28 in
the appendix. The intelligibility, LLR, WSS, and NIST-SNR
of the recovered signals are reported in Table 4. Interestingly,
the results show that eavesdroppers can recover speech at 80
dB from 25 meters away with fair intelligibility by exploiting
light emitted through curtain walls. We note that both songs
are recognized by Shazam.

7 Potential Improvements
In this section, we suggest methods that eavesdroppers

can use to optimize the quality of the recovered audio or
increase the distance between the eavesdropper and the light
bulb, without changing the setup of the target location. The
potential improvements suggested below are presented based
on the component they are aimed at optimizing.

Telescope: The amount of light that is captured by a tele-
scope with diameter r is determined by the area of its lens
(πr2). As a result, using telescopes with a larger lens diameter
enables the sensor to capture more light and optimizes the
SNR of the recovered audio signal. In order to prove this
claim, we compared the SNR obtained by directing an electro
optical sensor through three telescopes with lens diameters of
10, 20, 35 cm from a distance of 25 meters. The results can be
seen in Fig. 19 which presents the SNR obtained from three
telescopes (with lens diameters of 10, 20, 35 cm). The SNR
of the recovered audio signal obtained by the telescope with
a lens diameter of 35 cm and an electro-optical sensor gain of
50 dB is identical to the SNR of the recovered audio signal
obtained by the telescope with a lens diameter of 20 cm and
an electro-optical sensor gain of 70 dB. Eavesdroppers can
exploit this fact and use a telescope with a larger lens diameter
in order to optimize the quality of the signal captured.

Electro-Optical Sensor: The sensitivity of the system can
be enhanced by increasing the internal gain of the sensor.
Eavesdroppers can use a sensor that supports higher internal
gain levels (note that the electro-optical sensor used in this
study, PDA100A2 [8], outputs voltage in the range of [-5,5]
and supports a maximum internal gain of 70 dB). However,

any amplification that increases the signal obtained beyond
this range results in saturation that prevents the SNR from
reaching its full potential. This claim is demonstrated in Fig.
19 which presents the SNR obtained from three telescopes
(with lens diameters of 10, 20, 35 cm). Since the signal that
was captured by the telescope with a lens diameter of 35 cm
was very strong (due to the fact that a lot of light was captured
by the large lens), we could not increase the internal gain to a
level beyond 50 dB from a distance of 25 meters. As a result,
the SNR obtained by the telescope with a lens diameter of 35
cm did not reach its full potential and yielded the same SNR
as a telescope with a lens diameter of 20 cm and an electro-
optical sensor gain of 70 dB. With that in mind, eavesdroppers
can optimize the SNR of the optical measurements by using
a sensor that supports a wider range of output. Another op-
tion is to sample the signal from multiple sensors. Given N
sensors that sample a signal, the SNR increases by

√
N. Thus,

eavesdroppers can optimize the SNR of the optical signal by
obtaining measurements using several electro-optical sensors
directed at the light bulb and sample the bulb’s vibrations
simultaneously from several channels.

Sound Recovery System: The sound recovery system im-
plemented in this paper uses the digital approach and consists
of two components: an ADC and a sound recovery algorithm.
As discussed in Section 4, a 24-bit ADC with an input range
of [-5,5] voltage provides a sensitivity of 0.6 uV (see Equation
1). Only bulb vibrations that are expected to yield a greater
voltage change (i.e., > 0.6 uV) can be recovered by Lamphone.
A 32-bit ADC provides a higher level of sensitivity of 2.3 nV
and optimizes the system’s sensitivity significantly (see Equa-
tion 2). In addition, many advanced denoising methods have
been suggested by experts in the field of speech enhancement.
Advanced algorithms (e.g., neural networks) provide excellent
results for filtering the noise from an audio signal, however
often a large amount of data is required to train a model that
profiles the noise in order to optimize the output’s quality.
Such algorithms/models can be used in place of the simple
methods used in this research (e.g., normalization, spectral
subtraction, noise gating, etc.). Another option for maximiz-
ing the SNR is to profile the electro-optical sensor’s thermal
noise (when the light is recorded) in order to filter the noise
that is added to the analog output of the sensor.

8 Countermeasures
In this section, we describe several countermeasure meth-

ods that can be used to mitigate or prevent the Lamphone
attack. There are several factors that influence the SNR of the
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recovered audio signal which are in the victim’s control and
can be used to prevent/mitigate the attack.

One approach is aimed at reducing the amount of light
captured by the electro-optical sensor. As shown in Fig. 18,
the SNR decreases as the amount of light captured by the
electro-optical sensor decreases. Several techniques can be
used to limit the amount of light emitted. For example, weaker
bulbs can be used; the difference between a 12 watt E27 bulb
and a 9 watt E27 bulb is negligible for lighting an average
room. However, since a 9 watt E27 bulb emits less light than a
12 watt E27 bulb, less light is captured by the electro-optical
sensor, and the quality of the recovered audio signal decreases.
Another technique is to use curtain walls. As was shown in
Section 18, curtain walls decrease the quality of the recovered
audio significantly. Another approach is to limit the light
bulb’s vibrations. Lamphone relies on the fluctuations in air
pressure on the surface of a light bulb which result from sound
and cause the bulb to vibrate. A light bulb’s vibration can be
reduced by using a heavier bulb. There is less vibration from
a heavier bulb in response to air pressure on the bulb’s surface
(as was shown in Section 4, the SNR of the E27 light bulb is
lower than the SNR of the E14 light bulb).

9 Limitations, Discussion & Future Work
Lamphone suffers from a few disadvantages. (1) Inex-

pensive hardware and equipment (like the telescope, electro-
optical sensor, and ADC used in our experiments) can be used
to recover sound from 45 meters away with fair intelligibility
for speech at 70/80 dB. However, in order to increase the
attack range and recover high quality sound, more expensive
and professional equipment is required (e.g., a more sensitive
ADC and electro-optical sensor, a professional telescope). (2)
The equipment used by the eavesdropper must be positioned
near the target room, but in a location that will not raise suspi-
cion or lead to detection; it may be difficult or costly for the
eavesdropper to identify a location that meets these require-
ments (e.g., a room in a nearby building or a parked van). As a
result, we consider Lamphone an attack that can be applied by
parties with great financial resources (e.g., armies and police
departments) and not by average civilians.

We believe that in the next few years, new studies will im-
prove the proposed method of recovering sound from light,
so it will pose a greater threat to individuals’ privacy; future
research may improve the method such that it could even
be applied by eavesdroppers with less resources and from a
greater distance between the speaker/eavesdropping equip-
ment and the light bulb. A pressing question that arises is:
how long will it take the scientific community to improve this
method sufficiently so it will pose a greater threat to individu-
als’ privacy. An analysis of the scientific progress of another
eavesdropping method might help answer this question. The
Gyrophone method of recovering sound from a smartphone’s
motion sensors [23] was first introduced at USENIX 2014.
The main disadvantage of Gyrophone at that time was the

low accuracy of the model that was used to classify isolated
words (the accuracy was only slightly better than a random
guess). However, greater understanding regarding this eaves-
dropping technique and the threat model was obtained over
the years by other studies [10, 17, 36], and a recent study pre-
sented at NDSS 2020 was able to improve this method such
that it could be used to classify isolated words from a smart-
phone’s accelerometer with 99% accuracy [11]. Based on the
progress made in the last six years since Gyrophone was first
introduced, we believe that future studies will improve under-
standing on Lamphone and suggest new ways to overcome
the abovementioned limitations.

For future work, we suggest investigating whether sound
can be recovered via other lightweight sources (e.g., deco-
rative LED flowers), how inexpensive equipment could be
used to improve the range of the attack (e.g., by improving
the recovery model), how to extend the distance between the
light bulb and the speaker (e.g., by using artificial bandwidth
extension [18, 19, 21, 26, 27]), and how to apply the attack by
using compact equipment.
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10 Appendix - Spectrograms of Recovered
Speech

The spectrograms of the recovered speech for the six sen-
tences that were used to compare the results to the results
obtained by the visual microphone are presented in Figs. 20
and 21.

The spectrograms of the recovered speech ("We Will Make
America Great Again!") from various distances (5, 15, 25, 35,
45 meters) and with sound levels (60, 70, 80 dB) are presented
in Figs. 24 - 22.

The spectrograms of the recovered speech and songs from
the bridge are presented in Figs. 25 - 28.
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Figure 20: fadg0,mccs0,mabw0 sa1: "She had your dark suit in greasy wash water all year." Recovered (top) and original (bottom)
speech.

Figure 21: fadg0,mccs0,mabw0 sa2: "Don’t ask me to carry an oily rag like that." Recovered (top) and original (bottom) speech.

Figure 22: "We will make America great again" played at 80 dB and recovered from various distances
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Figure 23: "We will make America great again" played at 70 dB and recovered from various distances

Figure 24: "We will make America great again" played at 60 dB and recovered from various distances
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Figure 25: "We will make America great again" recovered
from a bridge 25 meters away from the target office. Recov-
ered (top) and original (bottom) speech.

Figure 26: "Mary had a little lamb" recovered from a bridge
25 meters away from the target office. Recovered (top) and
original (bottom) speech.

Figure 27: Clocks by Coldplay recovered from a bridge 25
meters away from the target office. Recovered (top) and origi-
nal (bottom) song.

Figure 28: Let it be by The Beatles recovered from a bridge
25 meters away from the target office. Recovered (top) and
original (bottom) song.
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