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Abstract—In this paper, we present video-based cryptanalysis,
a new method used to recover secret keys from a device by
analyzing video footage of a device’s power LED. We show that
cryptographic computations performed by the CPU change the
power consumption of the device which affect the brightness of
the device’s power LED. Based on this observation, we show how
attackers can exploit commercial video cameras (e.g., an iPhone
13’s camera or Internet-connected security camera) to recover
secret keys from devices. This is done by obtaining video footage
of a device’s power LED (in which the frame is filled with the
power LED) and exploiting the video camera’s rolling shutter
to increase the sampling rate by three orders of magnitude
from the FPS rate (60 measurements per second) to the rolling
shutter speed (60K measurements per second in the iPhone 13
Pro Max). The frames of the video footage of the device’s power
LED are analyzed in the RGB space, and the associated RGB
values are used to recover the secret key by inducing the power
consumption of the device from the RGB values. We demonstrate
the application of video-based cryptanalysis by performing two
side-channel cryptanalytic timing attacks and recover: (1) a 256-
bit ECDSA key from a smart card by analyzing video footage of
the power LED of a smart card reader via a hijacked Internet-
connected security camera located 16 meters away from the smart
card reader, and (2) a 378-bit SIKE key from a Samsung Galaxy
S8 by analyzing video footage of the power LED of Logitech Z120
USB speakers that were connected to the same USB hub (that
was used to charge the Galaxy S8) via an iPhone 13 Pro Max.
Finally, we discuss countermeasures, limitations, and the future
of video-based cryptanalysis in light of the expected improvements
in video cameras’ specifications.

I. INTRODUCTION

Video cameras have become one of the most ubiquitous
types of sensors used, and today they are integrated in a
variety of devices/systems (e.g., smartphones, drones, au-
tonomous vehicles) and deployed as standalone devices/sys-
tems (e.g., surveillance/security cameras, webcams) in smart
cities, houses, offices, businesses, and other settings. The wide
deployment of video cameras in devices and systems enabled
the development of new automatic capabilities/functionality,
however it has also created new privacy risks resulting from
their deployment in residential neighborhoods, urban environ-
ments, etc. While many studies analyzed and discussed the
risks posed by video cameras to individuals’ privacy in the
physical world (e.g., spying [1–4], sound/speech eavesdrop-

ping [5–7]), little is known about the risks posed by video
cameras to information confidentiality in the digital world.

In this paper, we present video-based cryptanalysis, a new
side-channel cryptanalytic attack that can be performed by
attackers to recover a secret key from a target device by
obtaining video footage of the target device’s power LED
using a commercial video camera (e.g., the video camera of
a smartphone or an Internet-connected security camera). We
show how attackers can exploit video footage of a device’s
power LED to recover a device’s secret key. This is possible
because the intensity/brightness of the device’s power LED
correlates with its power consumption, due to the fact that
in many devices, the power LED is connected directly to the
power line of the electrical circuit which lacks effective means
(e.g., filters, voltage stabilizers) of decoupling the correlation.

We empirically analyze the sensitivity of video cameras
and show that they can be used to conduct cryptanalysis
because: (1) the limited eight-bit resolution (a discrete space
of 256 values) of a single RGB channel of video footage of
a device’s power LED is sufficient for detecting differences
in the device’s power consumption which are caused by
the cryptographic computations, and (2) the video camera’s
rolling shutter can be exploited to upsample the sampling rate
of the intensity/brightness of the power LED in the video
footage to the level needed to perform cryptanalysis, i.e.,
increasing the number of measurements (sampling rate) of
the intensity/brightness of the power LED in video footage
by three orders of magnitude from the FPS rate (which
produces 60-120 measurements per second) to the rolling
shutter rate (which produces 60K measurements per second
in the iPhone 13 Pro Max), by zooming the video camera
on the power LED of the target device so the view of the
LED fills the entire frame of the video footage. By doing so,
attackers can use a readily available video camera to perform
cryptanalysis remotely instead of the professional dedicated
sensors typically used (e.g., a scope, software-defined radio).

First, we show that standard video cameras can detect
changes in the power supply to a power LED at a higher
frequency than their FPS (frames per second) rate (by ex-
ploiting their rolling shutter). Then, we discuss two potential
threat models that attackers can use to apply video-based
cryptanalysis, based on the type of the power LED of the
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device: (1) for devices with standard on/off power LEDs,
attackers can obtain video footage using their smartphone’s
video camera (i.e., attackers must have physical access to the
target device), and (2) for devices with indicative power LEDs
(in which the color of the power LED changes in response to
a CPU operation), attackers can obtain the video footage using
a nearby compromised Internet-connected video camera (i.e.,
attackers can apply the attack remotely over the Internet).

Next, we demonstrate video-based cryptanalysis and apply
two cryptanalytic attacks published in the last few years in
order to recover: (1) a 256-bit ECDSA key from a smart
card (exploiting the vulnerability presented in [8, 9]). The
ECDSA key is recovered by analyzing video footage obtained
via an Internet-connected video camera located sixteen meters
away from the smart card, (2) a 378-bit SIKE key from a
Samsung Galaxy S8 (exploiting the vulnerability presented
in [10]). The key is recovered by analyzing video footage
obtained by an iPhone 13 Pro Max’s video camera of a
power LED of speakers that were connected to the same
USB hub (which was used to charge the Samsung Galaxy
S8). Finally, we raise concern regarding the possibility that
a greater number of devices will be exposed to video-based
cryptanalysis in light of the existing improvements in video
camera specs (which include: an increased shutter speed, a
wider RGB space, and improved zoom capabilities) and in
light of the expected improvements in video cameras specs
(based on Moore’s Law).

Contributions. (1) We show that the combination of vul-
nerable cryptographic algorithms (i.e., that are vulnerable
to cryptanalytic side-channel attacks) and vulnerable power
LEDs (i.e., that their color/brightness leak information) can be
exploited by attackers to recover secret keys in a weaker threat
model with respect to SOTA works. Video-based cryptanalysis
relies on video cameras, which are much more common
and readily available than the equipment used to conduct
cryptanalysis in prior works (e.g., a scope, probe, software-
defined radio) and allow attackers to apply the attack in a non-
intrusive manner using video footage. (2) Attack vector - We
demonstrate two non-intrusive attack vectors (with physical
proximity and over the Internet) to apply video-based crypt-
analysis that can be exploited to perform existing and new
cryptanalytic side-channel attacks, depending on the type of
device’s power LED. (3) Exposure - We show that at least six
commercial smart card readers (that we bought on Amazon)
and a smartphone leak information that can be exploited to ap-
ply video-based cryptanalysis directly from their power LEDs
or indirectly via the power LEDs of connected peripherals
(speakers, USB hubs).

Structure. In Section II, we review related work. The threat
model is presented in Section III. In Section IV, we analyze
the bandwidth captured by video cameras of power LEDs. In
Sections V-VI, we demonstrate the application of video-based
cryptanalysis and recover ECDSA and SIKE keys from various
devices. In Section VII, we describe countermeasures, and in
Section VIII, we discuss limitations. Finally, in Section IX,
we discuss our findings and present the responsible disclosure
we performed.

II. RELATED WORK

Cryptanalysis. Cryptanalytic side-channel attacks which
exploit the correlation between the cryptographic computations
performed by a device and its physical emanations have
been demonstrated in many studies. Those studies exploited
the variation in a device’s power consumption to recover
secret keys by measuring a device’s power consumption (e.g.,
[11, 12]) or by measuring other side effects, including EMR
leakage (e.g., [13–19]) and acoustic noise (e.g., [20]).

In some studies [21–23] cryptanalysis was performed by
capturing near-infrared photons emitted from switching tran-
sistors located on the back of field programmable gate ar-
rays (FPGAs) during the execution of a proof-of-concept
implementation of cryptographic algorithms. However, the
suggested attacks are ineffective against commercial devices,
because their electrical circuits are encapsulated in light-
blocking covers (e.g., in smartphones). Moreover, these attacks
were not demonstrated on a commercial consumer device
running a common cryptographic library.

Power LEDs. Discussion regarding the risks posed to infor-
mation confidentiality stemming from the correlation between
the intensity of a power LED to the power consumed by the
device [24] began over 20 years ago [25]. However, prior re-
search demonstrating methods capable of exploiting a device’s
power LED for data exfiltration relied on preinstalled malware
[26–28] that actively triggered and controlled a device’s LED
(e.g., a keyboard [26], router [27], hard drive [28]) in order
to establish optical covert channels. A more recent study
presented a side-channel attack to recover speech from virtual
meetings by exploiting the power LED of speakers used in the
meeting [29, 30].

Rolling Shutters. A few studies demonstrated sound recov-
ery from video footage by exploiting a video camera’s rolling
shutter and analyzing the movements of objects in response to
nearby sound [5–7].

III. THREAT MODEL & UPSAMPLNG THE SAMPLING RATE

A. Threat Model

In video-based cryptanalysis, the attacker recovers secret
keys from a target device using video footage of the power
LED of the target device (i.e., a direct attack) or of the power
LED of a connected peripheral (i.e., an indirect attack) whose
power consumption is also affected by the power consumption
of the target device. The attacker exploits the correlation
between the intensity/brightness of a device’s power LED and
the device’s power consumption (which is affected by the cryp-
tographic operations performed); this correlation stems from
the fact that in many devices, the power LED is connected
directly to the power line of the device’s electrical circuit
which lacks effective means (e.g., filters, voltage stabilizers)
of decoupling the correlation. This correlation, which can be
detected by analyzing the RGB values of the device’s power
LED in video footage, is used by the attacker to perform
cryptanalysis. In order to achieve a sampling rate that can
be used for cryptanalysis, the attacker uses the video camera’s
rolling shutter to upsample the sampling rate by filling the
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entire frame with the LED (a detailed explanation of this is
provided later in this section).

Target Device. We assume that a target device is performing
cryptographic operations. The cryptographic operations can
be initiated by: (1) the user of the device, e.g., by opening
a TLS session to access an HTTPS website or by using a
VPN, or (2) an attacker, e.g., by sending the device messages
aimed at triggering automatic digital signing. We assume that
the target device contains a power LED or is connected to
another device/peripheral that contains a power LED (e.g.,
speakers, USB hub); the power LED of the target device or
the connected peripheral is one of type types of LEDs: (1)
A standard on/off power LED (type 1) - This is the most
common type of power LED integrated in devices. In this
case, the color of the LED does not change, and it emits
light only when the device is turned on. The brightness of the
LED changes very slightly in response to the level of power
consumption, however these changes are imperceptible to the
human eye. (2) An indicative power LED (type 2): This
type of power LED is very common in smart card readers,
and its color changes in response to triggered cryptographic
operations.

Attacker. We consider an attacker that is a malicious entity
interested in recovering a secret key from the target device in
order to: (1) decrypt previous and future cryptograms that were
delivered to the target device and intercepted by the attacker,
or (khz) sign on a message on behalf of a target device. We
assume that the attacker can obtain video footage of the power
LED.

Video Acquisition. We consider two types of video footage
acquisition models, which are based on the type of power
LED. (1) Close video acquisition - In this acquisition model,
the attacker uses their smartphone’s video camera to obtain
the video footage. In this case, we assume that the power
LED (type 1 or 2, which are described above) of a device or
connected peripheral leaks information from its power LED
(which correlates with the cryptographic operations). We also
assume that the attacker has access to the room in which
the target device is located and can use their smartphone
to obtain video footage of the power LED of the victim
device (or the connected peripheral) while the target device is
performing cryptographic operations. (2) Over the Internet
video acquisition - In this acquisition model, the attacker
obtains the video footage using a hijacked Internet-connected
security camera. In this case, we assume that the attacker is
able to compromise a 360◦Internet-connected video camera
with an optical zoom which is located near the target device
(up to 16 meters away). We assume that the attacker can
control the video camera using its API, use it to zoom and
record video footage of the power LED of the target device (or
the connected peripheral), and exfiltrate the footage over the
Internet to the attacker’s possession. In this video acquisition
model, we also assume that the device consists of an indicative
power LED (type 2) and that the differences in the color of
the device’s power LED triggered by cryptographic operations
can be detected from a distance.

Compromising an Internet-connected video camera is a
fair assumption considering that various studies that analyzed

Fig. 1. A rolling shutter of a video camera. In every frame period the rolling
shutter scans an object vertically and exposes the shutter for a short time
determined by E. The time it takes to scan a single frame is denoted by S.
Between two consecutive frames there is a transition period, during which the
object is not captured by any frame, which is denoted by T .

IP cameras’ security concluded that they are poorly secured
against cyber-attacks and allow attackers to remotely hijack
and control them over the Internet [31–33]. The poor se-
curity level of IP cameras has been exploited in the wild
by the famous Mirai and BASHLITE botnets that targeted
many Internet-connected video cameras as hosts for their bots
[34, 35].

Significance. We note that the threat model is non-invasive
(in contrast to power traces which require connecting a scope
to the device in order to obtain power measurements), relies on
common/ubiquitous equipment (as opposed to other methods
that rely on software-defined radios, photodiodes, scopes,
probes, etc.), can be applied over the Internet, and in some
cases, may endanger devices that do not even contain a
power LED via the power LED of connected peripherals (e.g.,
speakers, USB hub splitters, chargers, and headphones).

B. Increasing a Video Camera’s Sampling Rate Using a
Rolling Shutter

We note that the FPS rate supported by the vast majority
of commercial smartphones and security/IP video cameras is
limited to 60-120 FPS which is insufficient for performing
cryptanalysis. In order to increase the number of measurements
per second (sampling rate) to a level sufficient for cryptanaly-
sis, the attacker can exploit the video camera’s rolling shutter.

The rolling shutter is an image-capturing method in which
a frame of a video (in video footage) is captured by scanning
the scene vertically/horizontally. When this method is used, a
frame/picture is not actually composed of a single snapshot of
a scene taken at a specific point in time but rather is composed
of multiple snapshots taken of vertical/horizontal pieces of
the scene at different times. Fig. 1 visualizes this process:
With a vertical rolling shutter, a sensor’s pixels are exposed
and read out row-by-row sequentially at different times from
top to bottom (or left to right) according to a configurable
shutter speed (E) which determines the amount of time that
the sensor is exposed to light. Because each row (or a group
of adjacent rows) in a sensor with a rolling shutter is captured
at a different time, attackers can increase the sampling rate
from the camera’s FPS rate (60/120 FPS) to the rate at which
rows are recorded, a rate which is based on the shutter speed.

In video-based cryptanalysis, attackers exploit the rolling
shutter to upsample the number of measurements (sampling
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Fig. 2. Upsamling the FPS rate of the video camera to the shutter rate: An
Arduino’s LED flickering at 4 kHz (left) is recorded by a Samsung Galaxy
S22 Ultra using a lens that increases the size of the LED so that it fills the
entire screen (middle). A frame of the video recorded by the smartphone that
captures the 4 kHz flickering (right).

rate) obtained from the power LED to a higher rate. This is
done by setting the rolling shutter of the video camera to its
highest speed and zooming the video camera in on the LED,
ensuring that the view of the LED fills the entire frame of
the video footage. By doing this, the attacker ensures that
all of the time it takes to scan a frame (which is denoted
as S in Fig. 1) is dedicated to obtaining RGB samples of the
power LED. This allows the attacker to upsample the sampling
rate by a few orders of magnitude from the FPS rate (60-120
measurements per second) to the approximate shutter rate of
the video camera (60K measurements per second in an iPhone
13 Pro Max). We note that the measurements are not ideal,
because they are not uniformly sampled across time. As can
be seen in Fig. 1, there are transition periods (demoted by T )
between frames that are not sampled by the video camera and
do not appear in any frame. We consider the rolling shutter
sampling as semi-uniform: The sampling is uniform within a
frame but is not uniform across the video due to the transitions
between frames.

C. Determining the Transition and Scanning Times

We now explain how attackers can empirically determine
the transition and scanning time. We note that in some cases,
the exact transition time and scanning time may be required to
perform some types of cryptanalytic attacks (as demonstrated
later in Section V).

Experimental Setup. We programmed an Arduino Uno to
modulate a 4 kHz flicker using the Arduino’s integrated red
LED (using on/off modulation) by turning the power LED on
and off every 250 microseconds. We placed a Samsung Galaxy
S22 Ultra on the power LED and used a lens so that the entire
frame of the video footage would be filled with the view of
the LED. We used the smartphone’s native camera application
and set the video camera’s FPS rate at 60 and set the shutter
speed at 1

12,000 .
Calculating the Scanning and Transition Times. The

results of this experiment are presented in Fig. 2. As can
be seen, the frame consists of red lines (which indicate that
the LED was on) and black lines (which indicate that the
LED was off) which result from the flickering LED. This

experiment shows that the number of measurements obtained
of a power LED by a video camera can be increased by filling
the frame with the LED and exploiting the rolling shutter
speed. The scanning time can be calculated by multiplying
the time that the flicker was on (250 microseconds in our
experiment) by the number of transitions between the on/off
states in the frame (39 transitions in Fig. 2). In our case, the
scanning time is S = 9.75 ms. Since T = 1000

FPS − S, the
transition time of the video camera used in this experiment is
T = 1000

60 − 9.75 = 6.91 ms.
Note that this process can only be performed by attackers

with physical access to a video camera: for example, when
an attacker uses their smartphone to perform the attack,
the attacker can simply perform the steps describe above to
determine T and S. In cases in which the attack is performed
by an attacker over the Internet using a remote video camera,
the attacker would need to purchase the same camera used to
perform the attack in order to empirically determine T and S
(unless such information appears in the video camera’s specs).

IV. ANALYSIS

In this section, we analyze the factors that affect video-
based cryptanalysis: the bandwidth of the video camera, the
target cryptographic library, the distance between the video
camera and a device’s power LED, and the ambient light.
Throughout this section, we used two functions to create a
signal from a given channel (red, green, or blue) from the
video footage: Average − Rows and Average − Frames
(see Algorithm 1). Average−Rows function creates a signal
(time series) from the rows of a video’s frames by averaging
the RGB values in each row in a frame to produce a single
value for the signal. Average − Frames function creates a
signal (time series) from the frames of a video by averaging
all RGB values in a frame to produce a single value for the
signal. We note that the Average−Rows function is mostly
used for video footage that was obtained from a type 2 power
LED, while the Average− Frames function is mostly used
for video footage that was obtained from a type 1 power LED.

The reason that we used a different function for each case
is due to the noise added to a frame. In a single frame, noise is
present in individual pixels. When the signal is weak, the noise
can overpower the signal. To mitigate this, averaging all pixel
values in the frame (i.e., using Average−Frames function)
reduces noise and improves the signal-to-noise ratio (SNR).
However, when the signal is strong, averaging only the rows
(i.e., using Average−Rows function) can preserve fine details
and capture rapid changes, providing better time resolution.
The choice depends on the signal strength and the desired
balance between noise reduction and temporal accuracy.

A. The Captured Bandwidth

First, we examine the bandwidth captured by various video
cameras in response to changes in the intensity of a device’s
power LED.

Experimental Setup. We connected a USB hub to a func-
tion generator which was used to modulate a 200-25,200 Hz
frequency scan using 26 sine waves at intervals of 1000 Hz
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Algorithm 1 Creating Time Series from a Video
Inputs: vid = (f1, ..., fn) // a series of frames

chan // a value (0-2) for the RGB channel
Output: signal = a time series of rows’ average values
procedure AVERAGE-ROWS(vid, chan)

return Avg-Rows-And-Frames (vid, chan, ’rows’)
procedure AVERAGE-FRAMES(vid, chan)

return Avg-Rows-And-Frames (vid, chan, ’cols’)
procedure AVG-ROWS-AND-FRAMES(vid, chan, fl)

signal1 = {}, index1 = 0, signal2 = {}, index2 = 0
for (frame in video) do

nRows = length(frame), sum2 = 0
for (r = 0; r < nRows; r++) do

nCols = length(frame[r]), sum1 = 0
for (c = 0; c < nCols; r++) do

sum1 += frame[r][c][chan]
sum2 += frame[r][c][chan]

signal1 [index1] = sum1/nCols
index1++

signal2 [index2] = sum2/(nCols * nRows)
index2++

if (fl == ’rows’) then
return signal1

return signal2

Fig. 3. Recovering a frequency scan using a photodiode (left) and a
smartphone (right), by capturing video footage of the power LED of a USB
hub.

(starting from 200, 1,200, 2,200, ......, 25,200 Hz), each of
which was modulated at a different time. Each sine wave was
modulated for 500 ms over the power supplied to the USB
Hub using an amplitude of 2 V.

We conducted two experiments with two smartphones: an
iPhone 13 Pro Max (resolution: 1920x1080, FPS: 120, rolling
shutter speed: 1

61400 ) and a Samsung Galaxy S22 Ultra (resolu-
tion: 1920x1080, FPS: 120, rolling shutter speed: 1

12000 ). Both
smartphones were configured to their highest rolling shutter
speed. Each of the smartphones was placed on the USB hub’s
power LED, and their video cameras were used to film the
LED, using a lens (see Fig. 3). We also conducted a third
experiment and obtained an optical trace, using a photodiode
(Thorlabs PDA100A2) that was connected to an NI-9223 ADC
card. The photodiode was placed 2 cm away from the power
LED and sampled at a sampling rate of 100 KHz. The optical
trace was used for control purposes to validate the changes
in the USB hub’s power LED with a high-end optical sensor.
The experimental setup is presented in Fig. 3. In addition, we

Fig. 4. A frequency scan modulated over the power supplied to a USB hub.
Pictured are the spectrograms extracted from the power trace, optical trace
(using a photodiode), and the blue channel of two smartphones’ video cameras

obtained a power trace by inserting an adapter between the
function generator and the USB. The power trace was obtained
using a Digilent Analog Discovery 2 (scope).

Results. First, we extracted a spectrogram from the optical
trace obtained by the photodiode (see Fig. 4). As can be seen
in Fig. 4, the spectrogram shows that the frequency scan can
be captured using a high-end optical sensor.

Next, we used the Extract−Rows function and extracted
three signals for the blue, and extracted a spectrogram for
each signal (see Fig. 4). As can be seen in Fig. 4, only the
first six sine waves can be seen in the spectrogram extracted
from the video footage obtained by the Samsung Galaxy S22
Ultra, while only the first nine sine waves can be seen in the
spectrogram extracted from the video obtained by the iPhone
13 Pro Max. These results indicate that the effective bandwidth
captured by the video cameras is lower than the potential of
their shutter speed. Moreover, as can be seen in the figure,
the sixth sine wave that was originally produced at 5.2 kHz
(and was captured by the photodiode at the same frequency)
appears at around 4 kHz in the spectrogram extracted from
the Samsung Galaxy and around 3.7 kHz in the spectrogram
extracted from the iPhone. This is due to the video cameras’
non-uniform sampling of the LED, which stems from the
fact that the video cameras do not capture the LED during
transitions between frames.

Next, we examined the SNR in the tested spectrum, com-
paring the SNR of the two smartphones’ video cameras, the
photodiode, and the power trace generated by the function
generator (see Fig. 5. Based on the results presented in Fig.
5, we concluded that: (1) the effective bandwidth captured
by the video cameras (maximum 6-10 kHz) is lower than the
bandwidth captured by the photodiode (25 kHz). Within the
effective bandwidth, the SNR obtained by the signal extracted
from the video cameras is significantly lower than the SNR of
the optical trace obtained by the photodiode, (2) the bandwidth
captured by the iPhone (maximum 10 kHz) is wider than
the bandwidth captured by the Samsung Galaxy S22 Ultra
(maximum 6 kHz).



vi

TABLE I
COMPARISON OF THE OPTICAL SNR OBTAINED DIRECTLY AND

INDIRECTLY FROM A RASPBERRY PI RUNNING THE CRYPTOGRAPHIC
LIBRARIES TARGETED BY [8, 10, 36].

Directly Indirectly
Raspberry
Pi 3b+

Connected
USB Hub

Connected
Speakers

Libgcrypt 1.8.4 15.2 dB 16.4 dB 13.2 dB
GnuPG 1.4.13 16.5 dB 17.6 dB 14.5 dB
PQCrypto-SIDH 3.4 18.1 dB 22.4 dB 17.4 dB

B. Influence of the Cryptographic Library and Connected
Peripherals

Next, we examine how the SNR is affected by the crypto-
graphic library installed on the target device when the video
is acquired directly from its power LED and indirectly from
connected peripherals.

Experimental Setup. We compared the SNR obtained
from the cryptographic computations performed by three
cryptographic libraries installed on a Raspberry Pi 3B+: (1)
Libgcrypt 1.8.4 (during an ECDSA sign operation), (2) GnuPG
1.4.13 (during an RSA decrypt operation), and (3) PQCrypto-
SIDH 3.4 (during a SIKE operation).

We conducted three experiments. In the first experiment, we
obtained video footage of the power LED of the Raspberry
Pi 3B+ for the three cryptographic libraries. In the second
experiment, we obtained video footage of the power LED of
a USB hub that we connected to the Raspberry Pi 3B+ for
the three cryptographic libraries. In the third experiment, we
obtained video footage of the power LED of Logitech Z120
USB speakers that were connected to the USB hub that was
connected to the Raspberry Pi 3B+ for the three cryptographic
libraries.

Results. We applied the Extract − Frames function on
each video and extracted nine signals. Then, we calculated the
SNR for the signals. As can be seen in the results presented
in Table I, the target library under attack greatly affects
the optical SNR: the SNR obtained from a SIKE operation
executed by the PQCrypto-SIDH 3.4 library yields the highest
SNR for the three devices (17.4-22.4 dB); the SNR obtained
from an ECDSA sign operation executed by the Libgcrypt
1.8.4 library yields the lowest SNR for the three devices
(13.2-15.2 dB); and the SNR obtained from an RSA decrypt
operation executed by the GnuPG 1.4.13 library yields an
SNR lower than that of PQCrypto-SIDH 3.4 and higher than
Libgcrypt 1.8.4 (14.5-17.6 dB). This is due to the fact that: (1)
The leakage from the power LED present in the power LED
of the connected peripheral to the device (the USB hub) and in
the connected peripherals (USB speakers) that are connected to
the peripheral connected to the target device. The power LED
of a connected peripheral may amplify or reduce the SNR
(depending on the peripheral and the device under attack); in
our case, the USB hub increases the optical SNR by ∼1.1-4.3
dB, while the USB speakers decrease the SNR by ∼0.7-2.0
dB (compared to the SNR obtained directly from the power
LED of the Raspberry Pi). (4) Even devices that do not consist
of an integrated power LED and devices whose power LEDs
do not leak information from their integrated power LEDs

Fig. 5. Left: Right: SNR of smart card readers obtained from various
distances.

may be vulnerable to video-based cryptanalysis when they are
connected to another peripheral with a vulnerable power LED.

C. Influence of Distance

Next, we examine how the SNR is affected by the distance
between the target device’s power LED and the video camera.
This experiment was conducted using three smart card readers
that we bought from Amazon (to ensure confidentiality as
part of our process of responsible disclosure, we have not
mentioned the specific models used in this version of the
paper; we will include this information in the next version).
Each of the smart card readers contains an indicative power
LED (type 2; described earlier in the paper) which makes it
easier to detect the changes in their color from a distance (and
determine the beginning/end of an operation). We note that
the differences in the RGB values of standard on/off power
LEDs (type 1) can be detected from a maximum range of one
meter, and they are not vulnerable to video-based cryptanalysis
performed from a distance (i.e., using remote data acquisition).

Experimental Setup. We conducted three experiments. In
each experiment, we connected a smart card reader to a laptop
and inserted the Athena IDProtect smart card into the reader.
We wrote a script that triggers an ECDSA sign operation
using the smart card every 200 milliseconds. In response to
an ECDSA sign operation, color of the power LED of the
smart card readers changes. Then, we placed the SUNBA
video camera at five different distances from the smart card
reader (5, 10, 15, 20, 25 meters) and filmed the power LED
of the smart card reader in two states: idle and sign.

Results. We applied the Extract − Frames function and
extracted the associated signals for the blue channel. We
compared the SNR, using the values of the idle episode and
the RGB values of the ECDSA sign operation (see Fig. 5).
Based on these results, we concluded that the beginning/end
of ECDSA sign operations can be detected up to a range of
25 meters in one specific case.

D. Influence of Ambient Light

Next, we examine how the optical SNR is affected by am-
bient light for two types of optical data acquisition: (1) close
data acquisition, in which the video camera of a smartphone
placed on the device is used to film the power LED, and (2)
remote data acquisition, in which a remote video camera is
used to film the power LED.



vii

TABLE II
THE INFLUENCE OF AMBIENT LIGHT AND DATA ACQUISITION ON THE

OPTICAL SNR.

Ambient Light

Darkness Room Lighting
(Fluorescent) Sunlight

Data Acquisition 0 Lux 300 Lux 3000 Lux
Close via a
smartphone (2 cm) 26.8 dB 14.6 dB 0 dB

Remote via a
security camera (10 meters) 16.9 dB 17.2 dB 16.6 dB

Experimental Setup. We conducted two experiments. In
the first experiment, we connected a USB hub (Gold Touch 4
Ports USB3.0 Slim HUB) to a Samsung Galaxy S8. We wrote
a program that alternates between one-second repetitions of in-
teger multiplications (MUL) and one-second sleep operations
(WFI). We executed the code on the Samsung Galaxy S8. We
placed an iPhone 13 Pro Max on the USB hub and filmed its
power LED in three environmental settings: a dark room (0
lux), a room lit with fluorescent lighting (300 lux fluorescent
tubes), and a sunlit room (3000 lux). In the second experiment,
we inserted the Athena IDProtect smart card into a smart card
reader that was connected to a laptop. We wrote code that
triggers an ECDSA sign operation every 200 ms. We placed
the SUNBA video camera 10 meters away from the smart card
reader and filmed its power LED in the same environmental
settings: 0, 300, and 3000 lux.

Results. We analyzed the six videos and calculated the
SNR which are presented in Table II. Based on these results,
we concluded that: (1) in close data acquisition (when the
smartphone’s video camera is placed directly on the power
LED), the ambient light does not affect the SNR (in this case,
there is a change of up to 0.6 dB in the SNR, which is a
reasonable sampling error), and (2) in remote data acquisition
(where the video camera is placed at a distance from the power
LED of the device), the ambient light highly affects the SNR
(there is a change of up to 26.8 dB in the SNR), and dark
environments yield higher SNR values.

V. RECOVERING ECDSA KEYS

In this section, we describe the Minerva attack [8] that we
performed to demonstrate the recovery of a 256-bit ECDSA
private key from a smart card, using video footage obtained
by an Internet-connected security camera directed at the power
LED of a smart card reader from a range of five meters.

Minerva Attack. As observed in the papers presenting the
Minerva [8] and TPM-FAIL [9] attacks, many common cryp-
tographic libraries optimize the computation time of ECDSA
signing by truncating any leading zeros. This optimization
results in a variable number of loop iterations that is associated
with a variable execution time for the entire main loop,
which is determined by the number of leading zeros in the
randomly generated nonce. Thus, by measuring the signing
time, attackers can detect the number of loop iterations and
determine the number of leading zeros in the nonce k, which
can be used to extract the target’s private key using lattice
techniques, in which the signatures whose nonces have many
leading zeros are used to construct a hidden number problem,

which is reduced to a shortest vector problem and solved using
lattice reduction (see [8] for details).

We performed the Minerva attack to recover a smart card’s
ECDSA private key by estimating the signing time of a
signature from video footage of the smart card’s power LED
(as opposed to the original applications [8, 9] of the attack
which relied on CPU measurements of the ECDSA signing
operations obtained using code installed on the target lap-
top/computer). We also demonstrate a remote attack in which
footage obtained by an Internet-connected video camera lo-
cated five meters away from the smart card reader is exploited.

A. Identifying ECDSA Operations from Various Smart Card
Readers

First, we show that eight commercial smart card readers
with an indicative power LED (type 2) that we bought on
Amazon leak information regarding the execution time of the
ECDSA signature from their power LED. The color of the
power LED of these smart card readers changes in response
to an operation triggered by the connected laptop. We did not
name the manufacturers and models in the paper to allow for
responsible disclosure.

1) Experimental Setup: We conducted five experiments,
and in each experiment one of the smart card readers was
connected to a laptop via a USB cable and the Athena
IDProtect smart card was inserted into the reader. We placed a
SUNBA video camera 25X optical zoom 5MP smart security
dome1 20 cm away from the smart card reader. The Internet-
connected video camera’s remote API was used, and the
camera’s point of view was directed at the smart card reader’s
power LED. We focused the video camera on the power
LED and zoomed in until it filled the entire frame. Video
footage (full HD resolution, 60 FPS, shutter speed 1

500 , 8-
bit resolution for a single channel) was obtained from six
consecutive different ECDSA sign operations performed by
the smart card (separated by 200 ms of sleep).

2) Results: The five videos obtained in the experiment
described above were processed. For each video, we applied
Algorithm 1, which creates a signal from the rows of a video’s
frames by averaging the RGB values in each row in a frame to
a single value in the signal. Fig. 6 presents the signals (average
RGB values) of the 127,440 rows of 118 consecutive frames
from the five videos during six different ECDSA operations,
separated by 200 ms sleep episodes. Based on this experiment,
we concluded that: (1) the six ECDSA signatures can be
seen in the five extracted signals, and (2) the thresholds that
differentiate the signing and sleep episodes vary depending on
the signal extracted from the smart card readers and the RGB
channels.

B. Recovering ECDSA Keys from 16 Meters Away

We now demonstrate the end-to-end recovery of a 256-bit
ECDSA private key from video footage.

1 https://www.amazon.com/SUNBA-Ceiling-Outdoor-Security-Infrared/
dp/B09Z6R48SH/r

https://www.amazon.com/SUNBA-Ceiling-Outdoor-Security-Infrared/dp/B09Z6R48SH/r
https://www.amazon.com/SUNBA-Ceiling-Outdoor-Security-Infrared/dp/B09Z6R48SH/r
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Fig. 6. The RGB values extracted from 96 consecutive frames (with 103,680
rows) from video footage of the smart card reader’s power LED during the
execution of six different ECDSA signing operations, separated by 200 ms
sleep episodes. The colors represent the associated RGB channel.

Fig. 7. Experimental setup. As seen on the left, the video camera was directed
at the smart card reader (indicated by the red arrow) from 16 meters away.
On the right is an image of the smart card reader’s power LED.

1) Experimental Setup: We connected one of the smart card
readers to a laptop via a USB cable and inserted the Athena
IDProtect smart card into the reader. We placed a SUNBA
video camera 25X optical zoom 5MP smart security dome1

16 meters away from the smart card reader (the experimental
setup can be seen in Fig. 7). We used the Internet-connected
video camera remote API and directed the camera’s point
of view toward the power LED of the smart card reader
and zoomed in on the power LED until it filled the entire
frame (see Fig. 7). The experiment was conducted in a dark
environment (i.e., the lights in the room were turned off). We
obtained video footage (full HD resolution, 60 FPS, shutter
speed 1

500 , 8-bit resolution for a single channel) from 10,500
different ECDSA sign operations performed by the smart card
(separated by 200 ms of sleep). The 10,500 signatures were
recorded in 65 minutes over 35 different videos. Each video
lasted 1:50 minutes and consisted of 300 triggered ECDSA
signatures.

2) Extracting Frame Series Associated with ECDSA Signa-
tures: We applied the function percentage (see Algorithm 2)
on the video frames (f0, ..., fn) in order to determine whether
a frame is associated with a state in which the smart card
was in an idle mode (i.e., the frame consists only of blue
rows) or used for an ECDSA signing operation (i.e., the frame
consists of at least one red row). The function percentage

implements the abovementioned requirement by receiving a
frame fi and applying Algorithm 1 to extract a signal si,
where each value in the signal is the average of a row of
fi in the blue channel. The function returns pi, which is the
associated percentage of the values (averages of rows) in si
that are below the threshold distinguishing between the two
states of the smart card reader: idle (> 37.5) and operation (<
37.5). The threshold separating the two states was determined
based on the experiment described in Section III-C (see Fig.
6).

For each frame fi, the associated value pi was used to
compute bi, a binary value {idle/sign} that determines whether
the associated frame fi is associated with a state in which the
smart card reader was in an idle state (i.e., 0% of the rows
are black/red, and 100% of the rows are blue) or was used for
signing (i.e., some of the rows are black/red and some of the
rows are blue) accordingly:

bi =

{
idle, if pi = 0

sign, otherwise
(1)

We note that at the end of this process, the values of
b0, ..., bn consisted of 10,500 consecutive series of sign
separated by 10,501 consecutive series of idle as follows:
idle, idle, ..., idle, sign, sign, sign, ..., sign, idle, idle, ..., idle.
We identified the 10,500 consecutive sign series (that were
separated by the idle series), extracted their associated frames
(f1

start, ......, f
1
end, ..., f10,500

start , ......, f10,500
end ), and mapped them

to their relevant signatures (ECDSA1, ...., ECDSA10,500).
For each ECDSAi signature (1 ≤ i ≤ 10, 500), the frame

series associated with it (f i
start, ......, f

i
end) was analyzed, and

the signature was classified as one of two classes: Class I:
a frame series of ECDSA signatures that started and ended
during the scanning time; such signatures can be identified
based on the switch between the blue and black colors
somewhere in the middle of the first (f i

start) and last (f i
end)

frames, as can be seen in Fig. 8; and Class II: a frame series of
ECDSA signatures that started or ended during the transition
time (which is not captured by a frame); such signatures can
be identified based on the full black color in the first (f i

start)
or last (f i

end) frame, as can be seen in Fig. 8.
The class of each signature ECDSAi with associated frame

series f i
start, ..., f

i
end was determined by examining whether

the blue rows appear in the first (f i
start) or last (f i

end) frame.
This was done by applying the percentage function (see
Algorithm 2), calculating pf

i
start = Percentage(f i

start) and
pf

i
end = Percentage(f i

end), and testing their values using the
following conditions:

class(ECDSAi) =


class II, if pf

i
start = 1.0

class II, if pf
i
end = 1.0

class I, otherwise
(2)

We note that we were unable to compute the ECDSA
signature time of frame series that started or ended during the
transition between frames (i.e., Class II signatures) without
adding an error, since the beginning/end of the Class II
signature occurs during the transition between the frames and



ix

Fig. 8. Examples of ECDSA series extracted from video footage of a smart
card reader’s power LED. Top: A series of frames that started and ended
during the rolling shutter’s scanning time (a Class I series). Middle: A series
of frames that started during the transition time between frames (a Class
II series). Bottom: A series of frames that ended during the transition time
between frames (a Class II series).

is not captured in any video frames. Since the process of
performing lattice reduction followed by the time extraction
is highly sensitive to errors, we filtered the 2,674 Class II
signatures from the data.

3) Estimating the ECDSA Signature Time from Frame Se-
ries: First, we empirically computed the video camera’s transi-
tion (T ) and scanning (S) times by performing the experiment
described in Section III-C. Based on that experiment, we
determined that S = 13.8ms and T = 2.8ms.

Then, we computed the execution time of the frame series
of the remaining 7,826 Class I signatures. We assume a
video camera with the following specifications: for every
Class I ECDSAi signature with associated frame series
videoi = f i

start, ..., f
i
end that started at index start and ended

at index end. The signing time was calculated by applying
the CalculateSiginingTime function (Algorithm 2) accord-
ingly: CalculateSiginingTime(video = videoi, scan = 13.8,
trans = 2.8, threshold = 37.5, channel = 2).

Algorithm 2 calculates the signing time of an ECDSA
signature ECDSAi as the sum of T1 + T2 + T3 (see Fig. 8).
Algorithm 2 calculates T1 by multiplying the relative number
of rows that are associated with the sign operation in the
first frame f i

start by the scanning time S and adding the
transition time T . Algorithm 2 calculates T3, by multiplying
the relative number of rows associated with the sign operation
in the last frame f i

end by the scanning time S (in this case we
do not add the transition time T , because the sign operation
ends in the middle of the last frame’s f i

end scanning time).
Algorithm 2 calculates T2 for the additional end− start− 1
frames (f i

start+1, f
i
start+2, ...., f

i
end−2, f

i
end−1) by multiplying

the number of frames by the sum of S + T . The algorithm
returns the sum of T1 + T2 + T3 as the signing time for
ECDSAi.

4) Results: We computed the ECDSA signing time for
7,826 Class I signatures by applying Algorithm 2 on the 7,826
associated videos. The heat map presented in Fig. 9 shows
that the signatures with the shortest estimated time (that was
calculated from the video footage) have nonces with many
leading zeros, as needed for the Minerva attack. We then
executed the Minerva cryptanalysis script (downloaded from
the official Minerva GitHub repository [37]) and recovered the
full 256-bit ECDSA key in two minutes.

Algorithm 2 Minerva Attack
Inputs. video: (fstart, ..., fend) // a series of frames

ch: numeric value {0,1,2} for the RGB channel
scan: numeric a rolling shutter scanning time (ms)
tran: a rolling shutter transition time (ms)
thresh: a cuttoff to distinguish the idle/sign states

Output. signal: a time series of rows’ average values
procedure SIGNINGTIME(video, ch, scan, tran, thresh)

T1 = Percentage(fstart)× scan + trans
T2 = (end− start+ 1)× (scan + trans)
T3 = Percentage(fend)× scan
return T1 + T2 + T3

procedure PERCENTAGE(frame, ch)
signal = Average-Rows(frame, ch)

sum = 0
for (i = 0; i < length(signal); i++) do

if (signal[i] < threshold) then
sum++

return sum/length(signal)

Fig. 9. A heat map of the estimated execution times of 7,826 ECDSA sign
operations as a function of the number of leading zero bits in the nonce.

For completeness, we note that we also recovered the
ECDSA key from the power LED of the additional five smart
card readers using the same video camera from a distance of
30 cm. The five associated heatmaps extracted from the power
LED of the five smart card readers can be seen in Fig. ??.

VI. RECOVERING SIKE KEYS

In this section, we describe the recovery of a secret key
from supersingular isogeny key encapsulation (SIKE), a post-
quantum key encapsulation mechanism based on the supersin-
gular isogeny Diffie-Hellman (SIDH) key exchange protocol
[38]. We perform the Hertzbleed attack [10] against a Sam-
sung Galaxy S8 and recover a secret key (378-bit) from the
implementation of SIKE-751 in the PQCrypto-SIDH library
by using the video camera of an iPhone 13 Pro Max to obtain
video footage of the power LED of USB speakers that were
connected to the USB hub used to charge the Samsung Galaxy
S8 (which stored the SIKE key).

Hertzbleed Attack. As seen in the Hertzbleed attack [10],
the SIKE implementation in the PQCrypto-SIDH library leaks
information regarding the bits of the key due to Intel’s DVFS
(dynamic voltage and frequency scaling) mechanism, which in
certain circumstances can be exploited by an attacker to induce
variations in the CPU frequency by overloading the CPU
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Fig. 10. Top: A histogram of video-footage-based estimation of the minimal
runtime based on one iteration (left) and eight iterations (right). The error
rate (when a threshold of 36.15 is used to distinguish between mi = mi−1)
and mi ̸= mi−1) vs. the number of iterations used to determine the minimal
runtime.

with computations. This results in differences in the execution
times associated with the data processed; these differences
can be amplified to a distinguishable level (at a granularity of
milliseconds) by overloading the CPU using a large number
of operations executed in parallel (see [10] for details).

We apply the Hertzbleed attack to recover a Galaxy S8’s
SIKE private key by estimating the running time of various
SIKE decapsulation operations, using video footage, obtained
by an iPhone 13 Pro Max, of the power LED of a connected
USB hub which is used to charge the smartphone. By doing
so, we show that the Samsung Galaxy S8, which is based
on the ARM architecture, is also vulnerable to the Hertzbleed
attack (as opposed to the original attack which targeted an x86
architecture).

The Hertzbleed key extraction attack targets the smart-
phones’s static secret key, an integer m with bit expansion
m = (ml−1, ...,m0)2, where l = 378 (for SIKE-751). During
the decapsulation operation, the code computes P + [m]Q for
elliptic curve points P and Q included in the ciphertext, using
the Montgomery three-point ladder. Based on m0,...,mi−1 (the
i least significant bit (LSB) of m), an attacker can construct
points P and Q so that if mi ̸= mi−1, then the (i+1)st round
of the Montgomery three-point ladder produces an anomalous
zero value. Once that anomalous zero value appears, the
decapsulation algorithm gets stuck, and every intermediate
value produced for the remainder of the ladder is zero. If
mi = mi−1, or if the attacker was wrong about the i LSB of
m when constructing the ciphertext, then the (i + 1)st round
generates a non-zero value. Heuristically, the remainder of the
computation proceeds without producing an anomalous zero
value (except with negligible probability).

When mi ̸= mi−1 and the decapsulation algorithm gets
stuck, repeatedly producing and operating on zero values, the
processor consumes less power and runs at a higher steady-
state frequency (therefore decapsulation takes a shorter amount
of time). Hertzbleed exploits this observation and amplifies the

effect of the time difference to recover bits, by triggering a
large fixed number of encapsulation operations for the private
key’s bit under attack and then determining whether mi =
mi−1 or not, based on a timing threshold.

A. Determining the Threshold

First, we examine whether the behavior (the time difference)
on the x86 architecture reported in the original paper on
Hertzbleed [10] is also seen on the ARM architecture of the
Samsung Galaxy S8.

1) Experimental Setup: We downloaded the code published
in the Hertzbleed repository [39], installed the code on the
Samsung Galaxy S8, and used it to examine whether the
time difference is observable on the smartphone. We analyzed
the Samsung Galaxy S8’s CPU’s execution time for each
decapsulation operation. In our experiments, we used the four
different SIKE-751 keys. For each key m = (ml−1, ...,m0)2,
we uniformly targeted 38 bit positions: 5, 15, 35, 45,...,375.
For each of the bit positions, we executed a series of 800
SIKE operations divided into eight iterations, where in each
iteration 100 SIKE operations were executed on 100 threads
spawned concurrently. Overall, we executed 121,600 SIKE
operations that consisted of 1,216 iterations (each of which
consists of 100 SIKE operations); eight iterations were used
to measure the execution time of each bit. In this case, the
execution time of the SIKE iterations was calculated using
CPU measurements obtained with the code downloaded from
the official Hertzbleed repository.

2) Results: For each bit, we only used the last seven itera-
tions (which consisted of 700 SIKE decapsulation operations)
and disregarded the first iteration (which consists of 100
SIKE decapsulation operations), since we found that the first
iteration was unstable and mainly used to overload the CPU
in order to trigger stable execution differences associated with
the data processed in the next three iterations. As a result,
12.5% of the measurements were filtered out (1,064 iterations
were used).

Fig. 10 presents the distribution of the execution times of
the 1,064 iterations, calculated from the CPU measurements.
As can be seen, the distribution is very noisy, and there is no
clear threshold that can be used to differentiate the cases. The
execution times in red represent the case of a switch (mi ̸=
mi−1), with a mean = 36.354 and STD = 0.7478, and the
execution times in blue represent the case of a non-switch
(mi = mi−1), with a mean = 36.527 and STD = 0.8211.

As a result, for each bit and its seven iterations, we decided
to compute the minimal execution time of the iterations. The
distribution of the 152 bits (based on the minimal execution
time for the associated iterations) is presented in Fig. 10.
The execution times in red represent the case of a switch
(mi ̸= mi−1), with a mean = 36.092 and STD = 0.073, and
the execution times in blue represent the case of a non-switch
(mi = mi−1), with a mean = 36.223 and STD = 0.084. A
threshold of 36.15 can be used to differentiate between the two
classes with a negligible error. We also computed the error as
a function of the number of iterations (1-8) used to calculate
the minimal execution time with a threshold of 36.15 s. (the
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Fig. 11. Experimental setup. The video camera of an iPhone 13 Pro Max is
directed (through a lens) at the power LED of Logitech Z120 speakers that
are connected to a USB hub used to charge a Samsung Galaxy S8 (which
contains the SIKE key).

results are presented in Fig. 10). As can be seen from the
results, the error converges to 1% in the seventh iteration.

Based on this experiment, we concluded that: (1) the be-
havior (the time difference) reported in the Hertzbleed paper
[10] on the x86 architecture is also observable on the ARM
architecture at the granularity of a series of 100 consecutive
operations, with a threshold of 36.15 seconds that differentiates
the switch cases from the non-switch cases, and (2) there is
a need to employ an error correction algorithm to handle the
expected 1% of errors.

Algorithm 3 Hertzbleed Attack
Inputs. vid: (fstart, ..., fend) // a series of frames

chan: numeric value {0,1,2} for the RGB channel
Output. signal: a time series of rows’ average values
procedure EXTRACT-INDEXES (SIGNAL, THRESH)

indexes = [], i = 0
signal = Average-Frames (video,1)
for (j = 0; j < length(signal); j++) do

if ( thensignal [j] > threshold)
indexes [i] = signal [j]
i++

return indexes
procedure MINITERTIME (VID, CHAN, THRESH)

estimatedTimes = {} , i =0
signal = Average-Frames (vid, chan)
indexes = Extract-Indexes (signal, threshold)
for (j1 = 0; j1 < length(indexes)-1; j1++) do

for (j2 = j1+1; j2 < length(indexes)-1; j2++) do
n = indexes [j2] - indexes [j1])
time = n × (1/fps)
if (time > 36) then

estimatedTimes [i] = time
i++

min = minimum (estimatedTimes)
return min

B. SIKE Key Recovery

We now demonstrate the recovery of a full (378-bit) private
key from the SIKE-751 implementation using video footage,

Fig. 12. The RGB values of eight SIKE iterations extracted from a video
(top). Zooming in on the green channel (bottom).

obtained by an iPhone 13 Pro Max, from the power LED of
USB speakers that were connected to a USB hub that was used
to charge a Samsung Galaxy S8 (which contains the SIKE key)
in a series of adaptively chosen ciphertext attacks.

1) Experimental Setup: We connected the Samsung Galaxy
S8 to a USB hub (Gold Touch 8 Ports USB3.0 Slim HUB).
We also connected USB speakers (Logitech Z120) to the USB
hub. We used the video camera of an iPhone 13 Pro Max and
zoomed it onto the power LED of the USB speakers using a
lens (see Fig. 11). We obtained video footage from the iPhone
(resolution: 1920x1080, FPS: 120, rolling shutter speed: 1

61400 )
of the power LED of the USB speakers while the Samsung
Galaxy was attacked in a series of adaptive chosen ciphertext
attacks.

The series of adaptively chosen ciphertexts was created as
follows: For each index i of the private key we wanted to
recover, we created a dedicated input Mi which was used to
attack the implementation of SIKE-751 in the PQCrypto-SIDH
library, as described in the paper presenting Hertzbleed [10]
(using the i−1 bits already recovered). We used Mi to trigger
800 SIKE operations, which were divided into eight iterations,
where in each iteration 100 consecutive SIKE operations
were triggered with Mi and executed using 100 threads. This
process was repeated iteratively for all 377 indexes; first we
calculated the value of the ith bit, and then we created Mi+1.

2) Processing the Signal: We processed each video ob-
tained as we triggered the adaptive chosenly ciphertext attack
as follows:

We applied the MinIterT ime function (see Algorithm
3) on the video footage obtained. This function calls to
Average− Frames to extract a signal for the green channel
of the video footage. An example of the signal extracted from
one of the videos is presented in Fig. 12; as can be seen in
the image presenting the green channel, the eight iterations
can be detected visually, and the indexes associated with the
beginning of the iterations can be detected based on their
values which are greater than a threshold of 205.

Next, MinIterT ime calls to Extarct−Indexes to extract
the indexes of the frames associated with the beginning of the
iterations. This is done by determining whether the values of
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Fig. 13. Minimum times used to extract the first 20 bits (1 to 20) and last
20 bits (358 to 377) of the SIKE key based on eight iterations.

the indexes of the frames are greater than 204.9. We note that
due to added noise, the Extarct − Indexes function may
return more than eight indexes (i.e., the function may return
additional errors). Next, MinIterT ime computes the number
of frames between every two indexes (due to the errors that
may have been added in indexes) and calculates the time of the
iterations by multiplying the number of frames by (1/fps), the
number of seconds it takes to capture a frame (including the
transition time). The function filters any result that is lower
than 36 seconds (and caused by the added errors). Finally,
MinIterT ime returns min, the shortest iteration time.

We determined the value of the i-th index of the key
according to the value of min:

mi =

{
mi−1 if (min > 36.15)

¬(mi−1) otherwise
(3)

on the mi ̸= mi−1.
3) Results: First, we note that we guessed that the value

of the first index of the key (where j = 0) would be zero.
According to Hertzbleed, an incorrect guess/prediction of the
value of the key in any index n (where 0 ≤ n ≤ 377)
will create 377 − n consecutive non-switch cases (i.e., no
anomalous zero will appear from this point on). In our case, we
verified that our guess for the first index was correct by using
the next bit index (where j = 1) which was predicted as a
switch case. The minimal values among the seven iterations of
the first 20 least significant bit (LSB) positions (bits 1–20) and
the last 20 most significant bit (MSB) positions (bits 358–377)
of the key we recovered are presented in Fig. 13. The 378 bits
of the key were recovered with six errors that we encountered
and corrected during the recovery process.

4) Error Detection and Correction: We used an error
detection and correction algorithm to detect and correct the
six errors we encountered during the recovery process, based
on the error correction and detection algorithm suggested in
the original method suggested in the Hertzbleed paper [10]. In
the case of an error in the recovery of a bit with an index i, the
phenomenon that causes anomalous zeros (which is expected
to happen with a probability of 1

2 ) will not be triggered in the
subsequent bits recovered (see the Hertzbleed paper [10] for
more details). The untriggered anomalous zeros in the recovery
of the subsequent indexes will result in a non-switch case and
a longer execution time (that will cross the threshold used to
distinguish between mi = mi−1 and mi ̸= mi−1). This will
result in a chain of recovered bits with similar values (the
result of a chain of non-switches) for the subsequent indexes.

Fig. 14. The error detection (left) and correction (right) of bit index 33. The
graphs for the additional five indexes that were corrected appear in Fig. ??

In order to detect such errors, we set the detection algorithm
to raise an alert after 17 consecutive recoveries classified as
non-switch cases (whose execution time crossed the threshold
of 36.15 s). A chain of 17 consecutive non-switch bits is
expected to be the result of an error in a recovered bit with
99.9992% (except for a negligible error with a probability of

1
131,072 which is the result of 17 consecutive bits with the same
value in the key). Figs. 14 and 17 (in the appendix) present six
chains of 17 consecutive non-switch bits that we encountered
during the key recovery. For these chains, we repeated the
sampling process from the last index in which we encountered
a switch case. The corrected classifications for the chains of
the six bits are also presented in Figs. 14 and 17.

VII. COUNTERMEASURES

In this section, we describe several methods that can be used
to mitigate or prevent optical cryptanalysis attacks.

We note that the best way to prevent attackers from recov-
ering secret keys from devices is to ensure the cryptographic
library used does not leak any information that can be ex-
ploited to recover the key. However, hardware manufacturers
and users can apply their own mitigations in order to prevent
attackers from applying video-based cryptanalysis.

Manufacturer Side Methods. We differentiate between
two types of power LEDs: type 1 power LEDs (standard
on/off power LEDs) and type 2 power LEDs (that provide an
indication regarding CPU operations by changing their color).
We would advise manufacturers against integrating type 2
power LEDs in devices, because, as we have shown in this
work, they expose the device to remote secret key recovery
via an Internet-connected video camera; such LEDS enable
attackers to calculate the execution time of an operation by
analyzing the video footage from a distance (16 meters) due
to the significant changes in the color of the power LED
in response to CPU operations. In many devices, the type 1
power LED is connected directly to the power line of the
PCB (see Fig. 15a). As a result, the device’s power LED
is affected by the power consumption fluctuations that occur
when cryptographic operations are performed. To counter this
phenomenon, a few approaches should be considered by hard-
ware manufacturers: (1) Using a capacitor: A capacitor can be
integrated parallel to the power LED indicator; in this case,
the capacitor would behave as a low-pass filter (see Fig. 15b).
This is an inexpensive solution for reducing the fluctuations in
the power consumption. However in devices with high power
consumption, the integrated capacitor’s capacitance must be
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Fig. 15. A circuit that leaks information via its power LED (a). Counter-
measures using a capacitor (b), an additional OPAMP (c), and an existing
OPAMP (d).

large enough to support the power supply to the device.
(2) Using an operational amplifier (OPAMP); this can be
implemented by integrating an OPAMP between the power
line and the power LED (see Fig. 15c) or by using an existing
GPIO port of an integrated microcontroller as a power supply
for the power LED (see Fig. 15d). In both cases, this will
eliminate power line AC fluctuations by a factor of the OPAMP
amplifier’s common mode rejection ratio.

Consumer Side Methods. The attack can also be prevented
by placing black tape over a device’s power LED. While this
solution decreases a device’s UX, it prevents attackers from
obtaining traces from vulnerable devices.

VIII. LIMITATIONS

In this section, we discuss the limitations of video-based
cryptanalysis and how attackers can overcome them.

Limited Sampling Rate. Currently, the fastest shutter speed
of a commonly used commercial video camera supports a
speed of 1

60,000 (iPhone 14 Pro Max) which allows a sampling
rate of 60K measurements per second. As a result, devices
with high CPU rates (e.g., servers) may not be at risk of
video-based cryptanalysis, even if their power LED leaks fine-
grained information that could have been used for cryptanaly-
sis. We note that attackers can overcome this limitation by:
(1) combining video footage obtained from a set of video
cameras triggered by a C&C application that launches the
video footage of each video camera at different offsets in
order to increase the sampling rate in the factor of the number
of video cameras, or (2) by using dedicated video cameras
that support a shutter speed of (e.g., Fujifilm X-H2 supports
a shutter speed of 1

180,000 ).
Semi-Uniform Sampling. We note that for a video camera

with an FPS rate, the time given by 1
FPS = S + T

consists of S, which denotes the top-bottom scanning time
of a single frame, and T , which denotes the transition time
between frames (see Fig. 1 for more details). As a result,
while the rolling shutter provides uniform sampling of the
intensity of the power LED within a frame, the video of
the power LED does not provide a uniform distribution of
the intensity of the power LED across time (due to the fact
that the power LED is not captured by a frame during the
transition time). As a result, in the video footage there is no
indication for a cryptographic operation that starts/ends during
the transition time. Attackers can use one of the following
two approaches to resolve this: (1) Estimate the time of the
missing beginning/end indication of an operation by adding
half of the transition time (T2 ). The main disadvantage of this

simple approach is the fact that some cryptanalytic attacks
cannot tolerate errors. (2) Calculate the accurate beginning/end
time by collecting additional measurements. In general, if we
denote the transition time as T and the scanning time as S,
where S = 1

FPS − T , the probability that the beginning and
the end of a cryptographic operation will be captured in the
video is: S2×FPS2. Based on this observation, attackers can
obtain a few video recordings of the LED (while triggering the
same cryptographic operation) and increase the probability that
the video footage will consist of at least one cryptographic
operation that started and ended during the scanning time. By
doing so, attackers can estimate the accurate beginning/end
time from samples for which the starting and ending indication
was captured in the video footage.

Low/No Indication from the Integrated Power LEDs. We
note that some devices do not leak fine-grained information
from their integrated power LEDs. In such devices, the device
manufacturers decoupled the correlation between the power
consumption of the device and the intensity of the integrated
power LED in the design of the electrical circuits. However,
assuming that the power consumption of the device actually
leaks fine-grained information which can be used for crypt-
analysis, attackers can overcome this challenge by performing
an indirect attack (i.e., exploiting the leakage from the power
LED of a connected device), as we demonstrated in Section
VI. In devices that leak fine-grained information from their
power LEDs, we note that we observed different SNRs and
different/changing behaviors of signal extracted from the video
footage obtained by different video cameras.

Limited Sampling Sensitivity. We note that video cameras
are less sensitive than photodiodes, which can capture much
more subtle changes in the brightness of the LED. As a result,
a photodiode provides greater sensitivity and can yield a higher
SNR than a video camera (as can be seen in Fig. 5).

IX. DISCUSSION & DISCLOSURE

In this paper we showed that power LEDs can be exploited
by attackers as an infrastructure to obtain timing measurements
from devices and apply cryptanalytic side-channel attacks
against vulnerable cryptographic libraries. One might question
the contribution of video-based cryptanalysis, arguing that
this method is really used only to facilitate timing-based
cryptanalytic side-channel attacks, and that as a result, the
video footage is not needed, since the API used to trigger the
cryptographic operation during the attack on the target device
can be used to obtained time measurements by calculating
the time between the API request and the API response. In
response to such an argument, we note that in many cases, the
latency of networks and the Internet prevents attackers from
performing timing-based cryptanalytic side-channel attacks
remotely, because the timing measurements are compromised
by the latency of the network. For example, in the FAQ
section of the GitHub repository published by the authors of
the Minerva attack [8], the authors mentioned that they were
unable to perform the attack remotely for this reason and were
only able to perform the attack using timing measurements
obtained using code that was installed on the target device and
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used to obtain timing measurements by directly probing the
CPU (see Is this exploitable remotely? in Minerva’s GitHub
[37]).

We also raise concern regarding the real potential of video-
based cryptanalysis in our days, given existing improvements
in video cameras’ specifications. In our research, we focused
on commonly used and popular video cameras to demonstrate
video-based cryptanalysis (i.e., 8-bit space for a single RGB
channel, Full-HD resolution, and maximum supported shutter
speed). However, new versions of smartphones already support
video footage of 10-bit resolution (e.g., iPhone 14 Pro MAX
and Samsung Galaxy S23 Ultra). Moreover, professional video
cameras with a resolution of 12-14 bits already exist, 2 Such
video cameras may provide much greater sensitivity, which
may allow attackers to perform attacks with the ability to
detect very subtle changes in the device’s power consumption
via the intensity of the power LED. In addition, many Internet-
connected security cameras with greater optical-zoom capabil-
ities than the video camera used in our research (25X) already
exist (30X, 36X) and are likely already widely deployed. Such
security cameras may allow attackers to perform video-based
cryptanalysis against target devices from a greater distance
than that demonstrated in this paper. Finally, new professional
video cameras for photographers currently support a shutter
speed of 1

180,000 (e.g, Fujifilm X-H2.3) The use of such video
cameras may allow attackers to obtain measurements at a
higher sampling rate which may expose other devices to the
risk of video-based cryptanalysis.

The existing advancements in video cameras (that were
stressed earlier) already raise a question regarding the real
potential of video-based cryptanalysis in our days with the
use of professional video cameras (instead of the popular
and available video cameras that we used in this research).
Factoring the expected advancements for video cameras in the
next 20 years (assuming the improvements of video cameras
will continue to follow Moore’s Law) and the fact that many
functional IoT devices with limited CPU capabilities (e.g.,
sensors, and home appliances) are deployed every day, we
expect that the number of devices exposed to video-based
cryptanalysis will increase every year (unless dedicated pre-
cautions will be added to the electrical circuits).

We disclosed our findings to the manufacturers of the
devices used in our study via their bug bounty programs and
contact us email addresses (besides one manufacturer that we
were unable to find any information about it on the web). We
encouraged the manufacturers to speak to us to ensure that
they understood the problem and assist them in developing a
countermeasure. A few manufacturers responded to our email
and asked us for more details which we shared with them.
While the origin of the vulnerability that is exploited is the
result of the implementation or execution of the cryptographic
library and not of the hardware manufacturer, we recommend
that other hardware manufacturers empirically test whether
their devices are vulnerable to video-based cryptanalysis and
if needed, redesign their electrical circuits (according to the

2https://www.globalspec.com/ds/39/areaspec/bits_per_pixel_14
3https://fujifilm-x.com/en-us/products/cameras/x-h2/

suggestions provided in Section VII). We are, however, uncer-
tain whether they will choose to do so, as some solutions may
increase the manufacturer’s overall cost, decreasing revenue
or requiring the manufacturer to increase the product’s price.
While the cost of our countermeasures might seem negligible,
the addition of a component to prevent the attack could cost a
manufacturer millions of dollars, since such devices are often
mass-produced. Given the cost-driven nature of consumers and
the profit-driven nature of manufacturers, mitigations are not
always applied. This fact may leave many devices vulnerable
to video-based cryptanalysis attacks in the future.

For future work, we suggest: (1) testing the potential of
professional video cameras to recover cryptographic keys,
(2) testing the effectiveness of the suggested countermeasures
against the application of video-based cryptanalysis, and (3)
extending the understanding in privacy risks posed by power
LEDs to information confidentiality in the digital domain.
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Fig. 17. The error detection (left) and correction (right) of bit indexes 76,
149, 199, 235, and 327.
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